1) trip logic equation
跳闸逻辑方程
1.
It analyses the principle of current TAP and transformer/TA connection compensation of SEL-587 percentage restrained differential element, and discusses the difference between two different SEL-587 trip logic equations.
对SEL - 5 87的比率差动的电流调整比TAP及变压器 TA联结补偿的原理进行了分析 ,并比较了SEL - 5 87的两种跳闸逻辑方
2) trip logic
跳闸逻辑
1.
During the relay experiment,the trip logic order must be checked.
在继电保护调试中会遇到对多时限对多开关的保护跳闸逻辑进行检验的工作,现有的调试装置无法监测保护跳闸的顺序。
3) logical equation
逻辑方程
1.
The methods of finding the solutions to logical equation and logical equations;
逻辑方程和逻辑方程组的解法
2.
The author systematically describes the design and the development of the KPS system from aspects of the innovation background,the functional requirements,the design of logical equation,the software architecture and the functions application,and so forth.
从改造背景、功能需求、逻辑方程设计、软件体系结构及功能应用等方面对KPS系统的设计开发进行了系统的描述。
4) logic equation
逻辑方程
1.
Exploration of logic equation F=G s solution;
逻辑方程F=G解法的探讨
2.
To simplify mutual exclusive multivariable logic function through logic equation;
用解逻辑方程的方法化简互斥多变量逻辑函数
3.
The article gives some theories about the relations among solution sets of logic equations ∏from i=1 to m (Fi+■)=1,∏from i=1 to m Fi■=1 and logic equational group {F1=G1, Fm=Gm.
给出了逻辑方程∏from i=1 to m (Fi+■)=1,∏from i=1 to m Fi■=1及逻辑方程组F1=G1,┇Fm=Gm的解集关系定理,得到了如下结论:若逻辑方程∏from i=1 to m (Fi+■)=1和∏from i=1 to m Fi■=1解集分别为S1和S2,则逻辑方程组F1=G1,┇Fm=Gm的解集为S1-S2。
6) Logic equational group
逻辑方程组
1.
For the varied and easy solution to the logic equational group,this paper gives the necessary condition to establish the logic equational group made up of zero-one type and non-zero type and non-one type logic equations,and also gives the method to change the logic equational group into zero type and one type logic equations.
为了使解逻辑方程组灵活、方便、多样化,文章给出了由0-1型与非0非1型逻辑方程构成的逻辑方程组成立的充要条件、化逻辑方程组为0型或1型逻辑方程的方法,得到了若两个0型逻辑方程的解集分别为S1、S2,则逻辑方程组的解集为S1+S2;若两个1型逻辑方程的解集分别为S3、S4,则逻辑方程组的解集为S3+S4的结论。
2.
The article gives some theories about the relations among solution sets of logic equations ∏from i=1 to m (Fi+■)=1,∏from i=1 to m Fi■=1 and logic equational group {F1=G1, Fm=Gm.
给出了逻辑方程∏from i=1 to m (Fi+■)=1,∏from i=1 to m Fi■=1及逻辑方程组F1=G1,┇Fm=Gm的解集关系定理,得到了如下结论:若逻辑方程∏from i=1 to m (Fi+■)=1和∏from i=1 to m Fi■=1解集分别为S1和S2,则逻辑方程组F1=G1,┇Fm=Gm的解集为S1-S2。
补充资料:逻辑斯蒂方程(见种群增长模型)
逻辑斯蒂方程(见种群增长模型)
逻辑斯蒂方程见种群增长模型
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条