1) CVSD
连续可变斜率增量调制
1.
The technique for all digital mutual conversion between 16Kbit/s CVSD (continuously variable slope delta) encoded signals and 64?Kbit/s A law PCM (Pulse Code Modulation) encoded signals was proposed and made possible by the DSP chip in this paper.
提出并实现了一种基于DSP的 16Kbit/sCVSD(连续可变斜率增量调制 )编码与 6 4Kbit/sA律PCM(脉冲编码调制 )编码的全数字转换技术 。
2.
The digital code conversion algorithm between 64kb/s PCM and 16kb/s CVSD is developed.
提出一种采用不同编码体制的PCM(脉冲编码调制)和CVSD(连续可变斜率增量调制)之间的编码数字转换算法,该算法在无信道传输误码的前提下,满足“多次转接时无误差积累”这个条件;在此基础上,研究采用TMS320C50数字信号处理器实现该算法在实际中的应用,经过研究,采用此数字信号处理芯片设计出的网间桥接设备完全可以实现通信网的互连,具有一定的应用价值。
3.
The digital code conversion algorithm between 16 kbit/s CVSD and 64 kbit/s A-law PCM is developed and has also been realized in this paper.
研究了16 kbit/s连续可变斜率增量调制(CVSD)与64 kbit/s A律PCM编码相互转换的算法和实现。
2) Continuously Variable Slope Delta Modulation
连续可变斜率增量调制算法
4) CDM Continuous Delta Modulation
连续增量调制
5) continuously variable control
连续调节控制,连续可变控制,均匀调整
6) continuously power-tunable
连续可调功率
补充资料:增量调制
对模拟信号采样,并用每个样值与它的预测值的差值对周期脉冲序列进行调制,简称墹M或DM。已调脉冲序列以脉冲的有、无来表征差值的正负号,也就是差值只编成一位二进制码。
增量调制的基本原理是于1946年提出的,它是一种最简单的差值脉冲编码。早期的语言增量调制编码器是由分立元件组成的。随着模拟集成电路技术的发展,70年代末出现了音节压扩增量调制集成单片,80年代出现了瞬时压扩集成单片,单片内包括了开关电容滤波器与开关电容积分器,集成度不断提高,使增量调制的编码器的体积减小,功耗降低。
工作原理 简单增量调制(DM)的原理如图所示。图中:x(n)表示模拟信号的第n个采样值;慜(n)表示x(n)的预测值;憫(n)表示第n个样值的近似值,慜(n)=憫(n-1);d(n)表示样值x(n)与它的预测值慜(n)的差值,d(n)=x(n)-慜(n);廘(n)表示量化器输出值,若差值d(n)为正,则廘(n)=墹,墹称为量阶;若d(n)为负,则廘(n)=-墹。
增量调制系统发信端数码形成规则是:若量化器输出廘(n)=墹,则数码c(n)=1,亦称为"1"码;反之廘(n)=-墹,则数码c(n)=0,亦称为"0"码。在收信端,从数码解出量阶廘' (n),其解码规则是:接收到"1"码,c′(n)=1,给出量阶廘' (n)=墹;接收到"0"码,c′(n)=0,给出量阶廘' (n)=-墹。输出信号样值 揗 (n)=廘' (n)+廘' (n-1)。若传输信道无误码即c(n)=c′(n),则收信端揗 (n)和发信端憫(n)相同,经采样保持电路和低通滤波器后即恢复原模拟信号。实际电路中,可用积分器来实现相加器和延迟单元的功能;可用量阶发生器和极性开关来组成量化器;而采样、数码形成部分可由移位寄存器来组成。
分类 早期的简单增量调制的缺点是动态范围很窄,不能满足实用电话系统的要求,因此,出现了许多不同种类的增量调制的改进形式。其中应用较广泛的一类是自适应增量调制,它的特点是量化器的量阶能自动跟随信号幅度的变化,从而扩大了动态范围。如果量阶大小是由直接检测输出数码中的平均斜率信息(在音节10毫秒内的平均值)来控制的,就称为数字检测音节压扩增量调制;如果量阶的控制取决于相邻二个数码,则称为瞬时压扩增量调制;如果在大信号段采用音节压扩,而在小信号段采用瞬时压扩,则称为混合压扩增量调制;如果量阶控制信息直接由输入模拟信号中提取,则称为连续增量调制;如果把模拟信号经过积分后再进行增量调制,则称为总和增量调制,简称墹-∑调制;如果积分电路是由二节积分器串联组成的,则称为双积分增量调制。
特点 增量调制与脉码调制(PCM)相比,具有以下三个特点:①电路简单,而脉码调制编码器需要较多逻辑电路;②数据率低于40千比特/秒时,话音质量比脉码调制的好,增量调制一般采用的数据率为32千比特/秒或16千比特/秒;③抗信道误码性能好,能工作于误码率为10-3的信道,而脉码调制要求信道误码率低于10-5~10-6。因此,增量调制适用于军事通信、散射通信和农村电话网等中等质量的通信系统。增量调制技术还可应用于图像信号的数字化处理。
参考书目
清华大学通信教研组编著:《增量调制数字电话终端机》,人民邮电出版社,北京,1977。
J.C.Bellamy,Digital Telephony,John Wiley & Sons,New York,1982.
增量调制的基本原理是于1946年提出的,它是一种最简单的差值脉冲编码。早期的语言增量调制编码器是由分立元件组成的。随着模拟集成电路技术的发展,70年代末出现了音节压扩增量调制集成单片,80年代出现了瞬时压扩集成单片,单片内包括了开关电容滤波器与开关电容积分器,集成度不断提高,使增量调制的编码器的体积减小,功耗降低。
工作原理 简单增量调制(DM)的原理如图所示。图中:x(n)表示模拟信号的第n个采样值;慜(n)表示x(n)的预测值;憫(n)表示第n个样值的近似值,慜(n)=憫(n-1);d(n)表示样值x(n)与它的预测值慜(n)的差值,d(n)=x(n)-慜(n);廘(n)表示量化器输出值,若差值d(n)为正,则廘(n)=墹,墹称为量阶;若d(n)为负,则廘(n)=-墹。
增量调制系统发信端数码形成规则是:若量化器输出廘(n)=墹,则数码c(n)=1,亦称为"1"码;反之廘(n)=-墹,则数码c(n)=0,亦称为"0"码。在收信端,从数码解出量阶廘' (n),其解码规则是:接收到"1"码,c′(n)=1,给出量阶廘' (n)=墹;接收到"0"码,c′(n)=0,给出量阶廘' (n)=-墹。输出信号样值 揗 (n)=廘' (n)+廘' (n-1)。若传输信道无误码即c(n)=c′(n),则收信端揗 (n)和发信端憫(n)相同,经采样保持电路和低通滤波器后即恢复原模拟信号。实际电路中,可用积分器来实现相加器和延迟单元的功能;可用量阶发生器和极性开关来组成量化器;而采样、数码形成部分可由移位寄存器来组成。
分类 早期的简单增量调制的缺点是动态范围很窄,不能满足实用电话系统的要求,因此,出现了许多不同种类的增量调制的改进形式。其中应用较广泛的一类是自适应增量调制,它的特点是量化器的量阶能自动跟随信号幅度的变化,从而扩大了动态范围。如果量阶大小是由直接检测输出数码中的平均斜率信息(在音节10毫秒内的平均值)来控制的,就称为数字检测音节压扩增量调制;如果量阶的控制取决于相邻二个数码,则称为瞬时压扩增量调制;如果在大信号段采用音节压扩,而在小信号段采用瞬时压扩,则称为混合压扩增量调制;如果量阶控制信息直接由输入模拟信号中提取,则称为连续增量调制;如果把模拟信号经过积分后再进行增量调制,则称为总和增量调制,简称墹-∑调制;如果积分电路是由二节积分器串联组成的,则称为双积分增量调制。
特点 增量调制与脉码调制(PCM)相比,具有以下三个特点:①电路简单,而脉码调制编码器需要较多逻辑电路;②数据率低于40千比特/秒时,话音质量比脉码调制的好,增量调制一般采用的数据率为32千比特/秒或16千比特/秒;③抗信道误码性能好,能工作于误码率为10-3的信道,而脉码调制要求信道误码率低于10-5~10-6。因此,增量调制适用于军事通信、散射通信和农村电话网等中等质量的通信系统。增量调制技术还可应用于图像信号的数字化处理。
参考书目
清华大学通信教研组编著:《增量调制数字电话终端机》,人民邮电出版社,北京,1977。
J.C.Bellamy,Digital Telephony,John Wiley & Sons,New York,1982.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条