1) matrix dilation equation
矩阵伸缩方程
2) Dilation Matrix
伸缩矩阵
1.
In this paper, we give an algorithm for constructing orthogonal wavelet packets of arbitrary integer valued dilation matrix.
本文给出一种任意伸缩矩阵正交小波包构造方法 。
3) matrix refinement equation
伸缩方程
1.
In this paper, we discuss some characterization for the general extended matrix refinement equations and obtain the sufficient and necessary conditions of which L~p_c-solution exists.
研究一般扩张矩阵伸缩方程Lcp解的性质,相同分形中的选代函数系统构造tile和tiling性质,克服了通用方法中的不足,得到了这类方程存在紧支撑解的充要条件,从而推广了有关的结果。
4) scale-invariant intrinsic matrix
伸缩内在矩阵
1.
The polygon is globally represented by a scale-invariant intrinsic matrix.
提出了由顶点转角和相邻边长比例构成的多边形伸缩内在量表示的方法,多边形从整体上由一个伸缩内在矩阵来表示,该表示方法具有平移、旋转和伸缩等几何不变性。
2.
The geometric graphics is globally represented by a scale-invariant intrinsic matrix.
本文提出了平面几何图形的伸缩内在量表示方法,即由顶点一阶邻域内相邻夹边对的旋转角和长度比例来表示几何图形,图形从整体上由一个伸缩内在矩阵来表示。
5) Quincunx dilation matrix
梅花状伸缩矩阵
6) dilation matrixwith integral entries
整数伸缩矩阵
补充资料:矩阵微分方程
矩阵微分方程
matrix differential equation
矩阵微分方程【n.七议创晚ren创阅娜‘扣;M盯p“,Hoe几.巾中epe皿明一a几‘Hoe ypa二eH加e」 一个方程,以其中出现的函数的矩阵及其导数为未知量. 考虑下列形式的线性矩阵微分方程: X,=A(t)X,reR,(l)其中A(t)为具有局部Lebesgue可积元的n xn维矩阵函数,设X(约是方程(l)的满足条件X(t。)=I的绝对连续的解,这里I是单位矩阵.这时,向量函数x(r)=X(t)h(h‘R”)是线性方程组 x‘=A(t)x(2)满足条件x(t。)二h的解.反之,如果h:,…,h。6R”,而x,(t)是方程组(2)满足条件x‘(t。)=h‘(i=1,…,n)的解,则以解x‘(t)为列的矩阵是矩阵微分方程(l)的解.此外,如果向量h:,…,h。是线性无关的,则对于所有的踌R,detX(t)笋0. 方程(l)是下列矩阵微分方程(产生于稳定性理论)的特殊情况: X‘=A(r)X一XB(t)+C(t).(3)方程(3)的具有初始条件X(t。)=X。的解由下列公式给出: X(t)二U(t,t。)X。V(t,t。)+ +丁。(:,:)e(,):(:,:)己:, 亡O其中U(:,。)是方程(1)的具有条件X(s,s)=I的解,而V(t,、)是满足条件X(:,:)=I的矩阵微分方程X‘=B(OX的解. 在各种应用问题(镇定理论、最优控制理论、控制系统的滤过理论等等)中,所谓Rieeati矩阵微分方程(例亩议Rlccati differen杭习闪业石。n) X‘=A(t)X一XB(t)+C(t)+XD(t)X起着重要作用.例如,Riccati矩阵方程 x,=一(尸(t)+又I)Tx一X(F(t)+几I)一 一I+XG(t)G丁(t)X(这里T代表转置)对又)0在直线R上具有有界解X(t),并且对所有的h6R”,作R和某个。>O,不等式hTX(t)h)。hrh成立,则由反馈律u=一GT(t)X(t)x/2封闭的可控系统 x’=F(t)x+G(t)u,x任R”,u任R用的每个解都满足不等式 }x(t)}簇M lx(s)Ie一’(‘一’),s(t,这里l·l是Euc石d范数,且M与s无关.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条