1) strongly convex
强凸
1.
If X * has (**) property,the Banach space X is strongly convex if and only if X is locally uniformly convex.
证明了若X是自反的强光滑空间,则X是(HR)当且仅当X是局部的一致凸的;若Banach空间X具有()性质,则X是强凸的当且仅当X是局部的一致凸
2.
We give two necessary and sufficient conditions for n-Banach spaces to be uniformly convex spaces or strongly convex spaces.
本文着重将Banach空间中的一致凸﹑局部一致凸﹑强凸﹑非扩张映射﹑压缩映射等概念引入到n-Banach空间中,研究了n-Banach空间中的收敛性,几种凸性间的关系,以及不动点问题,全文共分为四章。
2) strong rotundity
强凸
1.
In this paper, we discuss midpoint local uniform rotundity, weak local uniform rotundity and strong rotundity of Cesaro vector_valued sequence spaces cesp(Ek),and give their cirtieria.
讨论了Cesaro矢值序列空间cesp(Ek)的中点局部一致凸、弱局部一致凸和强凸性,给出了它们的判据。
3) strong convex function
强凸函数
1.
Here we discuss its properties basing on the definition of the strong pseudoconvex function,and give its relationship with strong convex function.
文中在给出强伪凸函数定义的基础上讨论了它的一些性质,另外还给出了它与强凸函数之间的关系。
4) strictly pseudoconvex domain
强拟凸域
1.
We obtain a continuous solution of -equation for a strictly pseudoconvex domain with non-smooth boundary on Stein manifolds,which doesn t involve integral on boundary.
利用Hermitian度量和陈联络,构造拓广的不变积分核,借助Stokes公式,探究Stein流形中具有非光滑边界强拟凸域上Koppelman-Leray-Norguet公式的拓广式及其-方程的连续解,其特点是不含边界积分,从而避免了边界积分的复杂估计,另外该拓广式的特点是含有可供选择的实参数m,m=2,3,…,P(P<+∞),适用范围更加广泛。
2.
By meams of ΓK manifolds introduced by Laurent-Thiebaut,et al,we constructed extend B-M(Bochner-Matinelli) kernel to study extension formula of Koppelman-Leray-Norguet formula and obtained a continuous solutions of -equation on a strictly pseudoconvex domain with non-smooth boundary in Cn space.
利用Laurent-Thiebaut等引进的ΓK流形,构造拓广的B-M(Bochner-Matinelli)新核,探究Cn空间中具有非光滑边界强拟凸域上Koppelman-Leray-Norguet公式的拓广式和-方程的连续解。
3.
In [1],an extensional formula of Leray-Norguet with weight factors of differential forms and weighted continuous solutions of the -equation on a strictly pseudoconvex domain with piecewise C(1) smooth boundaries in C n were obtained.
文[1]得到Cn空间中具有逐块C(1)光滑边界的强拟凸域上(0,q)形式的带权因子的Leray-Norguet公式的拓广式及-方程带权因子的连续解。
5) K-strongly convex
K强凸
6) K-strong convexity
K强凸性
1.
We introduced the K-strong convexity (K-strong smoothness) in locally convex spaces, which are generalizations of both K-strong convexity (K-strong smoothness) in Banach spaces and strong convexity (K-strong smoothness) in locally convex spaces.
首先引进了局部凸空间K强凸性的概念,它既是Banach空间K强凸性概念在局部凸空间中的推广,又是局部凸空间强凸性概念的自然推广;其次给出了局部凸空间K强凸性概念的对偶概念,即局部凸空间K强光滑性的概念,并得到了K强凸(K强光滑)的局部凸空间的特征刻画;最后,在P-自反的条件下给出了它们之间的对偶定理,即(X,TP)是K强凸(K强光滑)的当且仅当(X′,TP′)是K强光滑(K强凸)的。
补充资料:凸凸
1.高出貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条