1) extended finite state machines
扩展的有限状态自动机
2) DEFSM
动态扩展有限状态机
3) Extensible-FSM
扩展的有限状态机
4) EFSM
扩展有限状态机
1.
Research on test sequence generation methods based on EFSM;
基于扩展有限状态机测试序列生成方法研究
2.
Research on the Transformation from State Chart to EFSM;
状态图到扩展有限状态机转换技术研究与实现
3.
Through the analysis of conformance testing text of substation communication protocol and FSM(Finite State Machine),a description method of substation communication protocol conformance test model based on EFSM(Extended Finite State Machine) is defin.
通过对变电站通信协议一致性测试文本和有限状态机(FSM)的分析,定义并提出了基于扩展有限状态机(EFSM)的变电站通信协议的一致性测试模型的描述方法。
5) extended finite state machine
扩展有限状态机
1.
Fault detection based on extended finite state machine model
基于扩展有限状态机模型的故障检测
2.
An SoC interface protocol testbench based on the extended finite state machine(EFSM)and assertion was proposed.
为此,提出了一种基于扩展有限状态机(EFSM)和断言的SoC接口协议测试平台,该平台是一种自反馈测试平台,它不仅可以自动产生大量符合协议规范的测试激励矢量,而且可以通过对断言统计信息的反馈提供多种偏置选择,从而进一步提高验证的自动化水平。
3.
A method for testing protocols modeled by EFSM(extended finite state machine) was proposed,which can insure both the control flow and data flow to be covered by test sequences.
为确保测试序列对控制流和数据流的覆盖,提出了一种对以扩展有限状态机(extended finitestate machine,EFSM)为模型描述的协议进行测试的方法。
6) deterministic finite automation (DFA)
确定的有限状态自动机
补充资料:ω-有限自动机
ω-有限自动机
ω-finite state automata
1094·。一youx一anz}dongJ-。.有限自动机(。一rinite state automata)一种在无限串上运行的有限状态自动机,是一种。一语言的识别模型。主要研究。一的各种识别方式以及在通常的五种识别条件下,识别的。一语言族之间的关系。特别,通过其中一种条件(即所谓CS)下识别的。一语言定义了QJ一正则语言,这是一种使。一自动机识别能力最强的识别方式。。一自动机理论的核心课题之一,是对。一正则语言的研究,包括对。一正则语言的描述及其性质的研究。 。一自动机最早在文献中出现的是J.R.Buchi(1960)利用工作在无限序列上的有限自动机获得关于受限二阶逻辑理论的一个判定过程。自此以后一些研究。一自动机的各种形式体系的论文陆续出现,其中J.R.Buchi,(1965,1969),C.C.Elgot和M.0.Rabin(1966,1%9)等人的论文均受到这些模型与二阶逻辑理论之间的密切关心的启发,因此重点放在判定问题。D.E.Muller(1963)利用确定的。一有限自动机研究异步开关理论中的某些问题。R.MeNatlgllton(1966)首先发展了被。一有限自动机识别的。一语言的理论,即所谓的。一正则语言的理论。 。一有限自动机研究的内容包括。一有限自动机的定义,五种识别条件,。一正则语言的概念,对断正则语言的描述以及与五种识别模型相应的五个。-语言族之间的关系。 。.申与。一语言设乏是有限字母表,由乞中的字母组成的无限序列,称为艺上的沙串。用2表示艺上的所有。一串的集合。2的任意子集称为乏上的。一语言。 沙有限自动机一个五元组M=(K,乞,占,q0,F),其中K为状态有限集,艺为输人字母表,占:Kx艺~ZK,q。(任K)为初始状态,F(里ZK)为指定状态集族。如果占:Kx艺~K,则M是确定的。一有限自动机。 设。=ala2’’·a,…,a,任乏,i=1,2,一。状态序列二={Q‘},称为M在。上的一个运行,当且仅当q,任创q、一,,a*),i=1,2,…。一个运行确定一个映射fr:N~K,井(i)=g,一l,i=1,2,…。令I(r)={,〔兀Icard(f厂1(。)))。},o(二)=}、〔K If厂‘(g)半必}。 。一有限自动机的识别条件包括Cl,CZ,C3,C4与CS五个条件。。一有限自动机M在C,条件下识别。一串。,当且仅当存在M在。上的一个运行r,使满足C,i=1,2,3,4,5。其中 Cl:存在H任F,使I(二)nH共曰 CZ:存在H任F,使I(:)二H c3:存在H任F,使O(r)nH护曰 C4:存在H任F,使O(:)里H CS:存在H任F,使I(:)=H 设M=(K,乞,a,qo,F)是一。一有限自动机,称集合 界(M)=}。任2}存在M在。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条