1) sequent ial probabilistic ratio test(SPRT)
序列概率比检验
2) sequential probability-ratio test
序列概率比试验
3) sequential probability ratio test
序贯概率比检验
1.
This method uses Kalman filter to acquire the residuals of the sensor and uses sequential probability ratio test to detect the fault based on multi-residuals,which can get the least number of the residuals by dynamical calculation and has some adaptive characteristic.
这种故障检测方法采用了Kalman滤波器进行滤波来获得残差,并采用序贯概率比检验来实现多残差检测故障,针对不同的情况能动态的调整检测故障检测所需要最小的残差数目,具有自适应的某些特点,用来解决多数据检测某传感器小偏置量故障的实时性和高准确率问题。
2.
The second,which is related to sequential probability ratio test,reduces multivariate CUSUM to a univariate nomral CUSUM when the mean in the bad state(or at least the bad direction)is known.
第1种是利用 Hotelling 统计量进行累积和,形成多元累积和控制图,并讨论了它的平均游程长度(ARL);第2种是在已知偏移状态下,用序贯概率比检验法将多元累积和问题转化为一元累积和问题。
3.
Using sequential probability ratio test n 1 (0,c 11 ),n 2 (1,c 12 ),.
利用Wald的序贯概率比检验中接收产品时对应的批检验数 :n1 (0 ,c1 1 ) ,n2 (1 ,c1 2 ) ,… ,nk (k - 1 ,c1k) ,… ,设计出一种改进型序贯检验 (其中当c1t
4) SPRT
序贯概率比检验
1.
Pipeline Leak Detection Method with Kalman Filter and SPRT;
卡尔曼滤波和序贯概率比检验在管道泄漏监测中的应用
2.
This paper proposed a new sampling plan, the sequential mesh test, in order to overcome the disadvantages of the widely used Sequential Probability Ratio Test (SPRT).
针对序贯概率比检验(SPRT)无法控制抽取样本量等不足之处,提出了一种改进的抽样检验方法——序贯网图检验。
3.
In this paper, the Sequential Probability Ratio Test (SPRT) is introduced to cryptanalysis to reduce the amount of keys needed in correlation attacks.
本文把序贯概率比检验引入到密码分析中,用来约减相关攻击所需的密钥量。
5) SPRT(sequential probability ratio test)
序列概率比
6) sequential probability ratio test
序贯概率比检验法
1.
The sequential probability ratio test (SPRT) can be applied only to the case that there is only white Guass noise in the pressure signal.
利用序贯概率比检验法检测油气管道泄漏是一种较新的方法。
补充资料:似然比检验
分子式:
CAS号:
性质:假设总体X是连续型的,其密度是p(x),则x1,x2,…,xn,的联合密度为g(x1,x2,…,xn)= p(x1)。关于样本的密度函数g(Xl,X2,…Xn;θ)有两个假设,H0:g(x1,x2,…xn;θ0)=p(xi, θ0)和H1:g(x1,x2,…xn;θ1)=p (xi;θ1)。统计量L(X1,X2,…,Xn)=称为假设H0对H1的检验问题的似然比。以似然比作统计量的检验,称作似然比检验。
CAS号:
性质:假设总体X是连续型的,其密度是p(x),则x1,x2,…,xn,的联合密度为g(x1,x2,…,xn)= p(x1)。关于样本的密度函数g(Xl,X2,…Xn;θ)有两个假设,H0:g(x1,x2,…xn;θ0)=p(xi, θ0)和H1:g(x1,x2,…xn;θ1)=p (xi;θ1)。统计量L(X1,X2,…,Xn)=称为假设H0对H1的检验问题的似然比。以似然比作统计量的检验,称作似然比检验。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条