说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 复合形算子
1)  complex shape operator
复合形算子
2)  composition operator
复合算子
1.
Weighted composition operators on Bergman space;
Bergman空间上的加权复合算子
2.
The compact composition operators between little Bloch type spaces on the unit ball;
单位球上小Bloch型空间之间的紧复合算子
3.
The composition operators on weighted Bloch space in the unit ball of C~n;
C~n中单位球上加权Bloch空间上的复合算子
3)  composition operators
复合算子
1.
Composition Operators on the Bloch Space of Several Complex Variables;
多复变数Bloch空间上的复合算子
2.
A sufficient condition is obtained to the composition operators with compact and closed range.
在解析算子函数所形成的空间上定义复合算子,给出此复合算子的紧性和闭值域性质。
3.
New sufficient and necessary conditions were given for the composition operators with closed range on the Bloch space.
研究了Bloch空间上复合算子的闭值域,给出了Bloch空间上的复合算子有闭值域的一个充要条件;进一步给出了Bloch空间上复合算子有闭值域的充分条件。
4)  complex algorithm
复合形算法
5)  complex method
复合形算法
1.
At the beginning of the evolution,PSO can search global area and find the local range quickly,and then,complex method would locate the extremum in the local range rapidly.
针对粒子群算法存在的收敛速度较慢和早熟收敛两大难题提出了一种新的改进型粒子群算法:搜索初期由粒子群算法进行全局寻优,当判断粒子群体已经进入局部最优区域时,引入复合形算法迅速达到局部收敛,从而有效地提高粒子群算法的局部搜索能力。
6)  Fredholm composition operator
Fredholm复合算子
补充资料:流形上的偏微分算子
      定义在整个微分流形上的偏微分算子。在一个未知函数的情形,m 阶线性的偏微分算子是M上C函数的集合C(M)到C(M)的一个线性映射l,而在每一坐标区域中,l可表示为这里显然,在两个坐标区域的重迭部分,l的两种表示可以通过坐标变换互相转换。例如,黎曼流形上的第二类贝尔特拉米算子,在每一个坐标区域中可表示为这里gij(x)是度量张量的反变分量,是克里斯托费尔符号(见黎曼几何学)。
  
  多个未知函数的线性偏微分算子 l可定义如下:设是定义在M上的向量丛,Г(E1)为C截面的全体,同样Г(E2)表示另一向量丛的C截面的全体,l是Г(E1)到Г(E2)的线性映射,它满足:对每一小的坐标区域U,如果Г(E1)和Г(E2)中的元素在U上的限制可以用m1元和m2元的列向量函数来表示,则l可以写为这里αα(x)是m2×m1阵,m1和m2分别是E1和E2的纤维的维数。
  
  在局部坐标下,微分算子的主符σ(l)(ξ)可表示为偏微分算子的类型可由其主符(和通常偏微分算子一样地)来决定。特别,对任何ξ≠0,若 σ(l)(ξ)恒为非异方阵时,算子l就是椭圆型的,例如,第二类贝尔特拉米算子Δ的主符可表示为由于黎曼度量是正定的,所以Δ是椭圆算子。
  
  对算子l而言,可以定义其象 其核ker(l)= {u∈Г(E2),lu=0},还可以作余核 Coker(l)=Г(E2)/Im(l),它们都是线性空间。当l是椭圆型偏微分算子时,可以证明Ker(l)和Coker(l)都是有限维的,Ker(l)的维数减去 Coker(l)的维数称为算子l的指标。20世纪60年代,M.F.阿蒂亚和I.M.辛格得到著名的指标定理:椭圆算子l的指标是由向量丛E1、向量丛E2和主符σ(l)所确定的一个拓扑不变量。
  
  在微分几何中时常要求解由微分算子所定义出来的偏微分方程,这种方程的解是否存在,有多少,往往不仅依赖于方程本身,而且依赖流形的性质。例如贝尔特拉米-拉普拉斯方程
  
  
    Δ u=0
  在紧致流形上就只有常数解。
  
  在微分流形中也可以定义非线性的偏微分方程,其重要性也与日俱增,极小曲面方程,蒙日-安培方程、杨-米尔斯方程都是非线性的偏微分方程。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条