说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 化圆为方
1)  Circularity transformed to square
化圆为方
2)  quadrature of a circle
化圆为方[问题]
3)  being changed into revised horseshoe tunnel
改为方圆型洞
4)  degenerate elliptic equation
退化椭圆型方程
1.
In this paper,on the basis of constructing a suitable test function by way of Hodge s decomposition of disturbing vector fields,we obtain regularity and stability of very weak solutions for a class of degenerate elliptic equations with p≥2;as follows-divA(x,g+u)=f+divh.
对退化椭圆型方程-divA(x,g+u)=f+divh,当p≥2时用扰动向量场的Hodge分解技巧来构造适当的检验函数,得到其很弱解的正则性和稳定性结果。
5)  potarimetric ellipse rotation angle
极化椭圆方向角
6)  degenerate elliptic equations
退化椭圆方程
1.
It s established that the bounded weak solution of a class of nonlinear degenerate elliptic equations with the natural growth belongs to the Hlder space with some Hlder exponent by way of Moser-Nash s iterating argument and a density lemma.
利用Moser-Nash迭代和稠密引理,得到了在自然增长下的非线性退化椭圆方程有界弱解具有某一Hlder指数的正则性;在已知数据的进一步正则性下,建立了具有任意γ满足0≤γ<κ的优化Hlder连续性指数,其中κ是A-调和函数的局部Hlder连续指数。
2.
This paper investigates degenerate elliptic equations of second order concerning the generalized Baouendi-Grushin operators.
本文研究与广义Baouendi-Grushin(B-G)算子相关的二阶退化椭圆方程。
3.
The C α regularity of viscosity solutions of Dirichl et problems for quasi linear degenerate elliptic equations -Tr+H(x,u,Du)=0, x∈Ω u=ψ, x ∈Ω is discussed.
讨论了一类拟线性退化椭圆方程 Dirichlet问题 - Tr[a(x) D2 u]+ H (x,u,Du) =0 ,x∈Ω u =ψ,x∈ Ω粘性解的 Cα 正则性 ,证明了当方程及边界满足一定条件时 ,若边值ψ(x)∈ Cα( Ω ) ,则粘性解 u(x)∈ Cα(Ω ) 。
补充资料:化圆为方
Image:11733343155538153.jpg
化圆为方

化圆为方是古希腊尺规作图问题之一,即:求一正方形,其面积等于一给定圆的面积。由π为超越数可知,该问题仅用尺规是无法完成的。但若放宽限制,这一问题可以通过特殊的曲线来完成。如西皮阿斯的割圆曲线,阿基米德的螺线等。

古希腊三大几何问题之一。

方圆的问题与提洛斯问题是同时代的,由希腊人开始研究。有名的阿基米得把这问题化成下述的形式:已知一圆的半径是r,圆周就是2πr,面积是πr2。由此若能作一个直角三角形,其夹直角的两边长分别为已知圆的周长2πr及半径r,则这三角形的面积就是

(1/2)(2πr)(r)=πr2

与已知圆的面积相等。由这个直角三角形不难作出同面积的正方形来。但是如何作这直角三角形的边。即如何作一缐段使其长等於一已知圆的周长,这问题阿基米德可就解不出了。

现已证明,在尺规作图的条件下,此题无解。

·化圆为方的来历和历史

公元前5世纪,古希腊哲学家安那萨哥拉斯因为发现太阳是个大火球,而不是阿波罗神,犯有“亵渎神灵罪”而被投入监狱。在法庭上,安那萨哥拉斯申诉道:“哪有什么太阳神阿波罗啊!那个光耀夺目的大球,只不过是一块火热的石头,大概有伯罗奔尼撒半岛那么大;再说,那个夜晚发出清光,晶莹透亮象一面大镜子的月亮,它本身并不发光,全是靠了太阳的照射,它才有了光亮。”结果他被判处死刑。

在等待执行的日子了,夜晚,安那萨哥拉斯睡不着。圆圆的月亮透过正方形的铁窗照进牢房,他对方铁窗和圆月亮产生了兴趣。他不断变换观察的位置,一会儿看见圆比正方形大,一会儿看见正方形比圆大。最后他说:“好了,就算两个图形面积一样大好了。”

安那萨哥拉斯把“求作一个正方形,使它的面积等于已知的圆面积”作为一个尺规作图问题来研究。起初他认为这个问题很容易解决,谁料想他把所有的时间都用上,也一无所获。

经过好朋友、政治家伯里克利的多方营救,安那萨哥拉斯获释出狱。他把自己在监狱中想到的问题公布出来,许多数学家对这个问题很感兴趣,都想解决,可是一个也没有成功。这就是著名的“化圆为方”问题。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条