1) discrete group
离散群
1.
The Riemann mapping functions and corresponding discrete group on doubly connected domains;
双连通域上的Riemann映照函数和相应的离散群
2.
Let G be a discrete group and (G,P) a quasily ordered group.
设G为一离散群,(G,P)为一个拟序群。
3.
We have proved the following main results: (1) if f= and in SL(2, Γn) have a common fixed point 0 or ∞, then tr[f, g] = 2 if and only if aα=αa, (2) If f is uniformly parabolic, (f, g) is a non-elementary discrete group, then and if g is also uniformly parabolic, thensinh sinh all x in Hn+
(2)若f是严格抛物元素,<f,g>是非初等离散群,则及当g也是严格抛物元素时有,其中x∈Hn+1。
2) Discrete groups
离散群
1.
This paper studies the Mbius Transformations groups in n,obtains several inequalities on discrete groups and gives several theorems about invariant set.
对高维Mbius变换群进行了研究,得到了离散群不等式,并给出了关于~n上Mbius变换群不动点集的定理。
3) discrete subgroup
离散子群
1.
For a general discrete subgroup in .
对的一般离散子群,运用另一方法解决了范数级数收敛性的问题。
2.
These notes provide an introduction to some aspects of the analytic theory of automorphic forms on G=SL(R),or the upper half-plane X with respect to a discrete subgroupΓ of G of finite covolume.
本讲义是关于自守形式解析理论的导论,这些自守形式定义在上半平面上,对应的群是G=SL2(R)或是G的具有有限余维数的离散子群Γ。
4) Dispersed aggregation
离散集群
5) discrete l group
离散l群
6) discreet semigroup
离散半群
1.
In this paper,we discuss the weak convergence of convotution powers of probability measures on some kind of countable and discreet semigroups.
讨论一类可数离散半群上概率测度卷积幂的弱收敛性 ,主要结果是利用局部群化的观点给出了概率测度卷积幂弱收敛的一个充分条件 。
补充资料:离散时间周期序列的离散傅里叶级数表示
(1)
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条