1) splitting extrapolation
分裂外推
1.
The Splitting Extrapolation Method of Mixed Finite Element Based on Domain Decomposition;
基于区域分解的混合有限元分裂外推
2.
Since multivariate asymptotic expansions of the approximate error with add power are shown, by means of splitting extrapolations we can not only make use of parallel algorithms to get higher precision approximations, but also obtain the a posteriori estimates.
通过估计离散矩阵的特征值,证明了近似解的收敛性;同时,给出了误差的多参数奇次幂渐近展开式,利用分裂外推算法不仅得到了较高精度的近似解,而且获得了后验误差估计。
3.
A splitting extrapolation based on decomposition and d-quadratic isoparametric finite element for solving linear hyperbolic equations with curved boundary is presented and multi-parameter asymptotic expansions of the error of the semi-discrete and fully-discrete finite element scheme are obtained.
给出了曲边界上二阶线性双曲型方程的基于区域分解和d-二次等参有限元的分裂外推算法,得到半离散问题和全离散问题的多参数渐近展开式,并用数值算例验证了方法的有效性。
2) fractal extrapolation
分形外推
1.
,constant dimension fractal extrapolation,variable dimension fractal extrapolation, complex dimension fractal extrapolation and fractal series extrapolation,are given.
讨论分形模型 N=C/r~D(其中分维数 D 可以是实数,变量,复数)和分形级数建立的外推公式;给出常维分形外推,变维分形外推,复数维分形外推,分形级数外推四种外推方法。
3) piecewise extrapolating method
分段外推
1.
Considering the gravity,tension,current force and mooring line extension,the piecewise extrapolating method is employed to the static analysis of the multi-component mooring line.
考虑了锚泊线的重力、张力、海流力及锚泊线的弹性伸长,应用分段外推的数值方法进行了静力分析;分别比较了海流力和浮子尺度作用对计算结果的影响;得到了在给定锚泊浮体位移时,整个锚泊系统所具有的回复力,并考虑了浮体竖向位移的影响。
4) extrapolating by analytical method
分析法外推
6) progressive deriving method (similar to cell division)
细胞分裂递推法
补充资料:Tafel线外推法
分子式:
分子量:
CAS号:
性质:见极化曲线法。
分子量:
CAS号:
性质:见极化曲线法。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条