说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 电解质脉冲
1)  electrolyte pulse
电解质脉冲
1.
Mathematical model for electrolyte pulse transport in shallow water flow on hilly slope;
坡面薄层水流中电解质脉冲迁移模型
2.
The dispersion coefficients of electrolyte solute in flow of different slope and sediment concentration are calculated using the mathematical model of electrolyte pulse transferring in laminar flow.
利用坡面薄层水流的电解质脉冲数学模型,计算了不同坡度和含沙量下的电解质弥散系数,发现在泥沙含量较低时,弥散系数与水流速度有较好的线性相关性,但泥沙含量较高时,泥沙含量对弥散系数作用更加强烈,弥散系数与速度的相关性较差,说明弥散系数受泥沙含量和水流速度影响,但三者的关系函数有待于进一步探讨。
2)  electrolyte pulse method
电解质脉冲法
1.
The electrolyte pulse method is used to measure the velocity of sheet flow on a slope in laboratory under the condition of artificial raining.
通过在室内不同坡度和降雨强度下用电解质脉冲法对坡面水流速度进行测量。
2.
Comparing results measured by these three methods showed that velocity of flow measured by electrolyte pulse method agree with those of other two methods while no permeating in the bottom or no losing of salt solute in the experimental process.
在室内模拟水槽中分别用质心运动学原理、电解质脉冲法和流量法3种方法测量不同坡度、不同泥沙含量条件下的薄层水流流速。
3.
Four types flow velocity are measured using electrolyte pulse method while rills are formed at slope, and when it rain for 10 minutes with intensity of 50 mm/h.
在降雨强度为50mm/h的条件下,在降雨10min后,在坡面初步形成细沟时,用电解质脉冲法对4种坡度的水流速度进行了测量。
3)  pulse-electrolysis
脉冲电解
1.
Analysis of causes of energy conservation and high efficiency of pulse-electrolysis in wastewater treatment;
废水脉冲电解处理节能高效的原因分析
4)  Pulse electrolysis
脉冲电解
1.
Purification of Copper Electrolyte by Pulse Electrolysis;
脉冲电解铜电解液的净化
2.
Many parameters,such as current density,time on and off,pulse frequence,can be interceded in pulse electrolysis.
脉冲电解可以调解电流密度、电流的通断时间、脉冲频率等多个参数,为控制金属沉积层的质量和沉积速度提供了有力的手段。
3.
The optimal technical condition for copper pulse electrolysis is investigated in the laboratory under the condition of 500A/m 2 mean current density, 6.
在小型电解槽中 ,研究脉冲电解法精炼铜的最佳工艺条件。
5)  EMD of pulse electrodeposite
脉冲电解MnO_2
6)  pulse electric discharging modification
脉冲电变质
补充资料:强电解质和弱电解质
      电解质一般可分为强电解质和弱电解质,两者的导电能力差别很大。可以认为强电解质在溶液中全部以离子的形态存在,即不存在电解质的"分子"(至少在稀溶液范围内属于这类情况)。由于浓度增加时,离子间的静电作用力增加,使离子淌度下降,当量电导也随着下降。对于弱电解质来说,它在溶液中的主要存在形态是分子,它的电离度很小,所以离子数目极少,静电作用也很小,可以认为离子淌度基本上不随浓度而变,因此当量电导随浓度增加而迅速下降的原因主要是电离度的很快下降。
  
  以上分类只是指两种极端的情况,实际体系并不这样简单,例如大部分较浓的强电解质溶液的正、负离子将因静电作用而发生缔合,使有效的离子数减少,促使当量电导下降。
  
  事实上,1887年S.A.阿伦尼乌斯发表的电离理论是按照上述弱电解质的模型提出的,他认为电解质在无限稀释的条件下是 100%电离的。设此时的当量电导为Λ0,则任何浓度下的电离度α 都可以根据该浓度下测得的当量电导Λ来计算:
  
  
  从而求出该电解质在溶液中的电离常数 K。电离理论应用于乙酸、氨水等弱电解质时取得很大的成功,但在用于强电解质时遇到了困难。直到20世纪20年代,P.德拜和L.昂萨格等发展了强电解质稀溶液的静电理论,才对电解质溶液的本质有了较全面的认识。
  
  根据上述强电解质溶液的模型和物质当量的定义,以及溶液的总电导率是正、负离子各自电导率的和这一性质(见离子淌度),可得:
  Ceq=C+|Z+|=C-|Z-|
  Λ=(U++U-)F式中Z+和Z-为正、负离子的价数;C+和C-是正、负离子的浓度;Ceq为当量浓度;U+和U-是正、负离子的离子淌度;F为法拉第常数。如果Λ+和Λ-分别代表 1当量正离子和1当量负离子的导电能力,则Λ=Λ+-+=U+F,Λ-=U-F。
  
  1926~1928年,昂萨格认为溶液浓度增加时,离子间距离缩短,静电作用增强,他应用静电理论得到在极稀浓度范围内强电解质溶液的电导公式:
  
  
  式中A为常数,图中也说明了溶液的当量电导与当量浓度的平方根呈线性关系。这一点与F.W.G.科尔劳施的精确电导测量结果完全符合,甚至昂萨格的电导公式中的常数 A也与实验测得的斜率相同,说明在极稀溶液范围内(对盐酸和氯化钾等对称的一价离子电解质来说,在<0.01N 范围内适用),上述强电解质模型是反映实际的。上式中的Λ0是外推法得到的C→0时的当量电导,相当于无限稀释时的当量电导。此时离子间的距离足够远,可以认为各种离子是独立移动的,静电力不起作用。
  
  
  
  如果把Λ+=U+F和Λ-=U-F改写成Λ+,0=U+,0F和Λ-,0=U-,0F,式中附加在Λ+和Λ-中的下标0表示它们是在无限稀释条件下的当量电导,于是,不管电解质中对应的离子是什么,U+,0和U-,0都应有独自的固定的数值。这就是科尔劳施根据实验提出的无限稀释条件下离子独立移动定律。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条