1) nonlinear fracture
非线性断裂
1.
As the Fracture Process Zone of concrete is considered as a virtual crack with cohesive force, the nonlinear fracture behavior of concrete and size effect are closely related with the cohesive stress distribution along FPZ.
混凝土断裂过程区视为具有粘聚阻力作用的虚拟裂纹 ,其非线性断裂和尺寸效应特性是与该虚拟裂纹粘聚力分布规律密切相关的。
2) nonlinear fracture toughness
非线性断裂韧度
1.
Research on test and revision of nonlinear fracture toughness of undisturbed frozen soils;
原状冻土非线性断裂韧度测试与修正
2.
Research on test of model Ⅰ nonlinear fracture toughness of undisturbed frozen soils based on energy balance method
基于能量平衡法的原状冻土Ⅰ型非线性断裂韧度测试研究
4) Nonlinear ruptural structure
非线性断裂构造
5) nonlinear fracture mechanics
非线性断裂力学
1.
Herein, the coupling method of deformable distinct elements with two nonlinear fracture mechanics models-smeared and discrete crack models is presented and applied to analyze the fracture and collapse of high concrete dam.
据此,本文系统研究并初步实现了变形体离散单元法与弥散裂缝模型和分离裂缝模型两种非线性断裂力学模型的耦合,并应用于混凝土高坝的断裂与破坏过程的工程分析中,主要研究内容包括: 1。
6) nonlinear viscoelastic fracture
非线性粘弹性断裂
补充资料:半导体非线性光学材料
半导体非线性光学材料
semiconductor nonlinear optical materials
载流子传输非线性:载流子运动改变了内电场,从而导致材料折射率改变的二次非线性效应。④热致非线性:半导体材料热效应使半导体升温,导致禁带宽度变窄、吸收边红移和吸收系数变化而引起折射率变化的效应。此外,极性半导体材料大都具有很强的二次非线性极化率和较宽的红外透光波段,可以作为红外激光的倍频、电光和声光材料。 在量子阱或超晶格材料中,载流子的运动一维限制使之产生量子尺寸效应,使载流子能态分布量子化,并产生强烈的二维激子效应。该二维体系材料中激子束缚能可达体材料的4倍,因此在室温就能表现出与激子有关的光学非线性。此外,外加电场很容易引起量子能态的显著变化,从而产生如量子限制斯塔克效应等独特的光学非线性效应。特别是一些11一VI族半导体,如Znse/ZnS超晶格中激子束缚能非常高,与GaAs/AIGaAs等m一V族超晶格相比,其激子的光学非线性可以得到更广泛的应用。 半导体量子阱、超晶格器件具有耗能低、适用性强、集成度高和速度快等优点,以及系统性强和并行处理的特点。因此有希望制作成光电子技术中光电集成器件,如各种光调制器、光开关、相位调制器、光双稳器件及复合功能的激光器件和光探测器等。 种类半导体非线性光学材料主要有以下4种。 ①111一V族半导体块材料:GaAs、InP、Gasb等为窄禁带半导体,吸收边在近红外区。 ②n一巩族半导体量子阱超晶格材料:HgTe、CdTe等为窄禁带半导体,禁带宽度接近零;Znse、ZnS等为宽禁带半导体,吸收带边在蓝绿光波段。Znse/ZnS、ZnMnse/ZnS等为蓝绿光波段非线性光学材料。 ③111一V族半导体量子阱超晶格材料:有GaAs/AIGaAs、GalnAs/AllnAs、GalnAs/InP、GalnAs/GaAssb、GalnP/GaAs。根据两种材料能带排列情况,将超晶格分为I型(跨立型)、n型(破隙型)、llA型(错开型)3种。 现状和发展超晶格的概念是1969年日本科学家江崎玲放奈和华裔科学家朱兆祥提出的。其二维量子阱中基态自由激子的非线性吸收、非线性折射及有关的电场效应是目前非线性集成光学的重要元件。其制备工艺都采用先进的外延技术完成。如分子束外延(MBE)、金属有机化学气相沉积(MOCVD或MOVPE)、化学束外延(CBE)、金属有机分子束外延(MOMBD、气体源分子束外延(GSMBE)、原子层外延(ALE)等技术,能够满足高精度的组分和原子级厚度控制的要求,适合制作异质界面清晰的外延材料。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条