1) generalized fractal
广义分维
1.
The application of generalized fractal in arrival time detection of seismograms;
广义分维在地震信号初至检测中的应用
2) generalized fractal dimension
广义分数维
1.
The generalized fractal dimension model of tunnel perimeter in jointed rock mass is put forward;and the relation between affecting parameters and generalized fractal dimension of tunnel perimeter is s.
影响隧洞围岩超挖的主要因素是岩体的地质特征和地质组成,对岩体在开挖过程中会遇到超挖问题,将从岩石的破坏机理出发,研究裂隙岩体开挖后的隧洞周边分数维,并提出了裂隙岩体隧洞开挖周边的广义分数维模型。
3) Generalized fractal dimension spectrum
广义分维谱
4) generalized dimension
广义分形维数
1.
The self-similar generalized dimensions D(q) and multifractal spectrum are carried out.
对正负电子对撞中Z0衰变能区产生的末态粒子系统的Levy稳定性问题进行了研究,计算出了Levy稳定性指数,得到了该系统自相似的广义分形维数和广义分形谱函数。
5) two-dimensional image principal component analysis
二维广义主成分分析
1.
Face recognition based on two-dimensional image principal component analysis;
基于二维广义主成分分析的人脸识别
6) general dimension
广义维数
1.
Aiming at that the reciprocating compressor vibration signals are nonlinear and non-stationary,multifractal spectrum and general dimension are applied to analyze compressor vibration signals and extract fault feature which can be identified.
针对往复压缩机振动信号的非线性和非平稳性,使用多重分形谱和广义维数对压缩机振动信号进行分析,从中提取可识别的故障特征。
2.
The multi-fractals theory is applied for proposing the calculation formula of general dimension least square method.
运用多重分形理论,提出广义维数最小二乘法的计算公式,对实测的时域信号进行了广义维数计算,得到广义维数序列值,并从广义维数中获取盒维数、信息维数、关联维数以及敏感维数。
3.
The multifractal features are extracted from the vibration signals of different spots on reciprocating compressor using the improving arithmetic,the general dimension spectrum of bearing .
采用多重分形改进算法提取往复压缩机振动信号的多重分形特征,得到了轴承故障的广义维数谱。
补充资料:弹性力学广义变分原理
弹性力学最小势能原理和弹性力学最小余能原理的推广,其特点是,变分式中各量都可有独立的变分,并且事前不受任何限制。在弹性力学空间问题中,最一般的广义变分原理可叙述为:弹性力学空间问题的解必须满足弹性体的广义势能变分为零的条件,该条件又称为驻值条件,即
δ∏3=0,
(1)式中∏3为弹性体的三类变量广义势能,其表达式为:
式中u(εij)为应变能密度;εij为应变分量;fi为体积力分量;ui为位移分量;σij为应力分量;pi为面力分量;Ω为弹性体所占的空间;B1为位移边界面;B2为受力边界面;ūi和圴i为边界上给定的位移分量和面力分量;dB为面积微元;式中重复下标表示约定求和。在变分式(1)中,ui、εij、σij等15个函数都可有独立的变分,并且事前没有任何附加条件(表面力pi看作是从属于应力σij的量)。从条件(1)可推出弹性力学的全部基本方程,包括应变-位移关系、应力-应变关系、平衡方程和边界条件。上述变分原理的独立变量有位移、应变、应力三类,因此称为三类变量广义变分原理。它是中国力学家胡海昌于1954年首先提出的,日本的鹫津久一郎于1955年也独立地得到这一原理,所以又称胡-鹫津原理。
弹性力学广义变分原理有一种稍弱的形式,即二类变量广义变分原理,又称为赫林格-瑞斯纳原理。它由E.赫林格于1914年和E.瑞斯纳于1950年分别独立提出,其数学表达式为:
δ∏2=0,
(3)式中
式中u*(σij)为余能密度。∏2中的独立自变函数有ui和σij两类共九个。将应变-位移关系代入式(2),消去εij,就可以得到式(4)。 因此二类变量广义变分原理是三类变量广义变分原理的一个特殊情况。
在有限元法和工程弹性理论中,广义变分原理有广泛的应用。例如,在板壳弯曲的有限元计算中,用它处理变形的不协调性,可得到较好的结果。对于解决几何非线性问题,胡-鹫津原理是一个有力的工具。在工程弹性理论中,广义变分原理可用于推导各种近似理论;在弹性振动和稳定理论中,可用于求固有频率和临界载荷,并能获得较好的结果。
参考书目
胡海昌著:《弹性力学的变分原理及其应用》,科学出版社,北京,1981。
δ∏3=0,
(1)式中∏3为弹性体的三类变量广义势能,其表达式为:
式中u(εij)为应变能密度;εij为应变分量;fi为体积力分量;ui为位移分量;σij为应力分量;pi为面力分量;Ω为弹性体所占的空间;B1为位移边界面;B2为受力边界面;ūi和圴i为边界上给定的位移分量和面力分量;dB为面积微元;式中重复下标表示约定求和。在变分式(1)中,ui、εij、σij等15个函数都可有独立的变分,并且事前没有任何附加条件(表面力pi看作是从属于应力σij的量)。从条件(1)可推出弹性力学的全部基本方程,包括应变-位移关系、应力-应变关系、平衡方程和边界条件。上述变分原理的独立变量有位移、应变、应力三类,因此称为三类变量广义变分原理。它是中国力学家胡海昌于1954年首先提出的,日本的鹫津久一郎于1955年也独立地得到这一原理,所以又称胡-鹫津原理。
弹性力学广义变分原理有一种稍弱的形式,即二类变量广义变分原理,又称为赫林格-瑞斯纳原理。它由E.赫林格于1914年和E.瑞斯纳于1950年分别独立提出,其数学表达式为:
δ∏2=0,
(3)式中
式中u*(σij)为余能密度。∏2中的独立自变函数有ui和σij两类共九个。将应变-位移关系代入式(2),消去εij,就可以得到式(4)。 因此二类变量广义变分原理是三类变量广义变分原理的一个特殊情况。
在有限元法和工程弹性理论中,广义变分原理有广泛的应用。例如,在板壳弯曲的有限元计算中,用它处理变形的不协调性,可得到较好的结果。对于解决几何非线性问题,胡-鹫津原理是一个有力的工具。在工程弹性理论中,广义变分原理可用于推导各种近似理论;在弹性振动和稳定理论中,可用于求固有频率和临界载荷,并能获得较好的结果。
参考书目
胡海昌著:《弹性力学的变分原理及其应用》,科学出版社,北京,1981。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条