1) fault propagation digraph
故障传播有向图
1.
There are two topics about the method being given: fault propagation digraph and signed directed graph( SDG) .
该文给出了基于图论的故障诊断原理,综述了基于图论的故障诊断研究现状,包括两种主要方法:基于故障传播有向图和基于符号有向图的诊断方法。
2) fault propagation graph
故障传播图
1.
A kind of integrated qualitative and quantitative modelbased collaborative fault diagnosis method has been applied on the brake-by-wire system of locomotion engineering machine,and fault propagation graph s Hierarchical generation strategy has been detailed with corresponding model diagnoses observer.
试图以一种集定性、定量模型诊断为一体的分层协同诊断方法运用于运动工程机械的线控电液制动系统,详细介绍了故障传播图的层次化产生方法以及对应的模型诊断观测器,并使用诊断管理单元的FLIP算法和控制管理模块进行在线实时性复杂系统协同诊断,最后用一个简例来表述贯穿本诊断方法全过程。
3) fault directional graph
故障有向图
1.
A k-steps fault pervasion and localization algorithm is put forward,which fractionalizes the fault directional graph and finds the optimal pervasion route or the most suspicion nodes with the fault propagation probability matrix.
对系统故障有向图进行了分片处理,结合故障传播概率矩阵对故障嫌疑节点进行故障扩散模拟寻找最佳扩散路径和最大嫌疑节点。
2.
A k-steps fault pervasion algorithm is put forward, which can find the optimal pervasion route of the system fault directional graph.
文中分析了故障传播的机理及其有限步扩散性,提出了一种K步故障扩散算法,针对系统故障有向图寻找最佳扩散路径,使用C++编程实现算法并对具体工程进行了仿真实验,可同时模拟和诊断单点和多点故障。
4) Fault Effect Propagation map
故障影响传播图
5) failure propagation
故障传播
1.
A failure propagation model for a city pipeline network was developed to simulate the scope of the failure propagation to provide a scientific basis for accident prevention.
为了模拟城市燃气管网破裂泄漏的故障传播范围及影响程度,进而为事故的预防工作提供科学的依据,该文综合研究了2种情况,即燃气管网节点破裂和管段破裂,把管段及节点计算流量子模型、燃气泄漏子模型以及管网压力分布计算子模型有机结合起来,建立了城市燃气管网的故障传播模型。
2.
To find the failure propagation mechanism from the inherent topological structure of the complex electromechanical system,the topological structure statistical properties of the system were analyzed with small world net theory,and a failure propagation model based on the small world clustering was proposed.
为了从复杂机电系统自身固有的网络拓扑结构出发来研究故障的传播机制,采用小世界网络理论分析方法,对系统网络拓扑结构统计特性进行分析,建立了基于小世界聚类特性的故障传播模型。
6) fault propagation
故障传播
1.
In order to solve the problem of complexity and uncertainty of fault propagation and analysis in complex system, a new model for fault propagation and fault diagnosis in complex system-Fuzzy Probability Petri Nets System (FPPNS) was constructed.
针对复杂系统故障传播与故障分析的复杂性与不确定性,建立了一种复杂系统故障传播与故障分析模型,即模糊概率Petri网系统。
2.
Based on the structure of system devices and fault propagation nature between the subdevices.
基于对系统结构的分析,利用系统本身各部件之间的故障传播特性,提出了一种新的算法,以确定系统发生故障时真正的故障源。
3.
A k-steps fault pervasion and localization algorithm is put forward,which fractionalizes the fault directional graph and finds the optimal pervasion route or the most suspicion nodes with the fault propagation probability matrix.
分析了故障传播的机理并推断出其有限步扩散性,提出了一种K步故障扩散定位算法。
补充资料:电磁波在各向异性媒质中的传播
在各向异性的媒质中,媒质的极化强度未必与电场强度同方向,或磁化强度未必与磁场强度同方向。电磁波在各向异性媒质中传播与在各向同性媒质中的传播有显著的区别。电磁波在各向异性媒质中传播的特点,表现在光线通过晶体时发生的双折射现象,这早已为人们所知。M.法拉第曾发现,光通过放在恒磁场中的媒质时,光的偏振面会发生旋转。J.C.麦克斯韦在论证了光是电磁波以后,也曾在理论上分析过电磁波在各向异性媒质中传播的特性。现代,与各向异性媒质中波的传播特性有关的学科,在光学中有晶体光学,在等离子体物理学和电波传播学科中研究电磁波在磁化等离子体中的传播,在微波技术中研究并应用电磁波在磁化铁氧体中的传播,等等。
各向异性媒质的本构关系 这个关系可用矩阵表示。当媒质是线性无损的,可分为三种情形:①[Di]=[εij]·[Ej]而[Bi]=μ[Hi],并且εij=εji,或[D]i=ε[Ei]而[Bi]=[μij]·[Hj],并且μij=μji,这些εij或μij都是实数。在这种媒质中,如有两个场(以角标(1)、(2)区别之)。它们仍能符合E(1)·D(2)=E(2)·D(1)和H(1)·B(2)=H(2)·B(1)的关系,因而倒易原理仍然成立,这种媒质是倒易性的。②虽然仍有电或磁一方面各向异性,但是εij=ε壥或μij=μ壥,对于ij,εij或μij是复数,这时倒易原理不再成立。以[εij]为例,可以写成[εij]=[ε]+j[gij],其中[ε]是实对称矩阵。[gij]是实反对称矩阵。[gij]·[Ej]所代表的矢量与E正交,这种媒质称为旋性媒质。③B和D的分量都同时是E和H的分量的齐次线性函数,[Di]=[εij]·[Ej]+[ξij]·[Hj]、[Bi]=[μij]·[Hj]+[ηij]·[Ej],这是双各向异性媒质。
电磁波在倒易性各向异性媒质中的传播 倒易性各向异性电介质包括各种晶体。有些各向同性媒质在一定强度的恒电场作用下也能成为各向异性电介质(称为克尔效应);有些弹性体在发生应变时,也会成为各向异性电介质;在液体中有非球形悬浮质点,而液体的流速不均匀时,这液体也可能成为各向异性电介质(称为麦克斯韦效应),它们都是倒易性的。倒易性电介质在适当选择的正交坐标系中,其介电常数矩阵成为对角矩阵,其主对角线元素称为介电常数的主值,此坐标轴称为介质的主轴。三个主值相等的介质称为立方介质,与各向同性一样,任何三个正交方向都可以作为主轴,立方晶系就是如此。有两个主值相等的介质称为单轴介质,与单独的主值相应的主轴称为光轴,在光轴的法平面内的任何一对正交直线都可以作为与一对重值主值相应的主轴,六角、三角和四角晶系都属于这一类。三个主值都不相等的介质称为双轴介质,正交、单斜和三斜晶系都属于这一类。主轴可能不与晶体的对称轴相合,主轴的方向也可能随频率而变。
均匀平面电磁波在倒易性各向异性电介质中,①D、H与波矢k互相正交,因为在一般情形,D与E不同向,所以E的纵分量不为零。②对于任一传播方向,有两个相应的相速v嗞。所以说,沿着每一个传播方向可能存在两个相速不同的波,它们各自独立传播,这两个波的相速还因传播方向而改变,它们的强度则决定于激励条件。③能流的方向与传播方向不同,而且传递速度高于相速,只在波沿主轴传播时二者才相同。能量传递速度称为射线速度。
由于麦克斯韦方程组的对偶性,电磁波在倒易性各向异性磁介质中的传播特性与各向异性电介质中的情形类似。
电磁波在旋性媒质中的传播 典型的旋性媒质是恒磁场作用下的冷等离子体(磁旋性电介质)和铁氧体(磁旋性磁介质),有的晶体,例如石英,是自然的旋性电介质。
在磁旋性电介质中,沿着同一个方向仍可传播两个相速不同的波,波的D的端点轨迹是长、短轴互相交错而旋转方向相反的两个椭圆。当波沿均匀恒磁场的力线传播时,这轨迹成为圆。如果两个波的圆半径相等,在任何空间位置上,两个波的电位移矢量D的和仍然在一条直线段上振动。波的传播路程中,总电位移D的偏振面逐点转变。H和E的顶点轨迹也是如此,这就是法拉第偏振旋转,这偏转的方向与传播方向无关,因而是不可逆的。至于能流的方向,不但与传播方向不同,而且是随时改变的。瞬时的能量传递速度在这里没有意义。
磁旋性磁介质中电磁波的传播特性可由磁旋性电介质类推。
电磁波在磁旋性媒质中的不可逆传播特性在技术上有相当广泛的应用,恒磁化铁氧体元件在微波技术中用途甚广。
电磁波在双各向异性媒质中的传播 这种媒质的存在是Л.Д.朗道、E.M.栗弗席兹等人在1959~1960年间预言的,Д.H.阿斯特罗夫在当时找到了这种材料。现在所知,具有这种性质的媒质限于某些反铁磁性和铁磁性晶体。其分析比较复杂。如果四个参量矩阵可以同时对角化,在这种媒质中可能发生可逆的偏振旋转现象。线偏振的均匀平面波沿着一条主轴传播时,其偏振面沿途旋转,类似于法拉第旋转。但是,旋转方向与传播方向之间的相对关系是恒定的。
各向异性媒质的本构关系 这个关系可用矩阵表示。当媒质是线性无损的,可分为三种情形:①[Di]=[εij]·[Ej]而[Bi]=μ[Hi],并且εij=εji,或[D]i=ε[Ei]而[Bi]=[μij]·[Hj],并且μij=μji,这些εij或μij都是实数。在这种媒质中,如有两个场(以角标(1)、(2)区别之)。它们仍能符合E(1)·D(2)=E(2)·D(1)和H(1)·B(2)=H(2)·B(1)的关系,因而倒易原理仍然成立,这种媒质是倒易性的。②虽然仍有电或磁一方面各向异性,但是εij=ε壥或μij=μ壥,对于ij,εij或μij是复数,这时倒易原理不再成立。以[εij]为例,可以写成[εij]=[ε]+j[gij],其中[ε]是实对称矩阵。[gij]是实反对称矩阵。[gij]·[Ej]所代表的矢量与E正交,这种媒质称为旋性媒质。③B和D的分量都同时是E和H的分量的齐次线性函数,[Di]=[εij]·[Ej]+[ξij]·[Hj]、[Bi]=[μij]·[Hj]+[ηij]·[Ej],这是双各向异性媒质。
电磁波在倒易性各向异性媒质中的传播 倒易性各向异性电介质包括各种晶体。有些各向同性媒质在一定强度的恒电场作用下也能成为各向异性电介质(称为克尔效应);有些弹性体在发生应变时,也会成为各向异性电介质;在液体中有非球形悬浮质点,而液体的流速不均匀时,这液体也可能成为各向异性电介质(称为麦克斯韦效应),它们都是倒易性的。倒易性电介质在适当选择的正交坐标系中,其介电常数矩阵成为对角矩阵,其主对角线元素称为介电常数的主值,此坐标轴称为介质的主轴。三个主值相等的介质称为立方介质,与各向同性一样,任何三个正交方向都可以作为主轴,立方晶系就是如此。有两个主值相等的介质称为单轴介质,与单独的主值相应的主轴称为光轴,在光轴的法平面内的任何一对正交直线都可以作为与一对重值主值相应的主轴,六角、三角和四角晶系都属于这一类。三个主值都不相等的介质称为双轴介质,正交、单斜和三斜晶系都属于这一类。主轴可能不与晶体的对称轴相合,主轴的方向也可能随频率而变。
均匀平面电磁波在倒易性各向异性电介质中,①D、H与波矢k互相正交,因为在一般情形,D与E不同向,所以E的纵分量不为零。②对于任一传播方向,有两个相应的相速v嗞。所以说,沿着每一个传播方向可能存在两个相速不同的波,它们各自独立传播,这两个波的相速还因传播方向而改变,它们的强度则决定于激励条件。③能流的方向与传播方向不同,而且传递速度高于相速,只在波沿主轴传播时二者才相同。能量传递速度称为射线速度。
由于麦克斯韦方程组的对偶性,电磁波在倒易性各向异性磁介质中的传播特性与各向异性电介质中的情形类似。
电磁波在旋性媒质中的传播 典型的旋性媒质是恒磁场作用下的冷等离子体(磁旋性电介质)和铁氧体(磁旋性磁介质),有的晶体,例如石英,是自然的旋性电介质。
在磁旋性电介质中,沿着同一个方向仍可传播两个相速不同的波,波的D的端点轨迹是长、短轴互相交错而旋转方向相反的两个椭圆。当波沿均匀恒磁场的力线传播时,这轨迹成为圆。如果两个波的圆半径相等,在任何空间位置上,两个波的电位移矢量D的和仍然在一条直线段上振动。波的传播路程中,总电位移D的偏振面逐点转变。H和E的顶点轨迹也是如此,这就是法拉第偏振旋转,这偏转的方向与传播方向无关,因而是不可逆的。至于能流的方向,不但与传播方向不同,而且是随时改变的。瞬时的能量传递速度在这里没有意义。
磁旋性磁介质中电磁波的传播特性可由磁旋性电介质类推。
电磁波在磁旋性媒质中的不可逆传播特性在技术上有相当广泛的应用,恒磁化铁氧体元件在微波技术中用途甚广。
电磁波在双各向异性媒质中的传播 这种媒质的存在是Л.Д.朗道、E.M.栗弗席兹等人在1959~1960年间预言的,Д.H.阿斯特罗夫在当时找到了这种材料。现在所知,具有这种性质的媒质限于某些反铁磁性和铁磁性晶体。其分析比较复杂。如果四个参量矩阵可以同时对角化,在这种媒质中可能发生可逆的偏振旋转现象。线偏振的均匀平面波沿着一条主轴传播时,其偏振面沿途旋转,类似于法拉第旋转。但是,旋转方向与传播方向之间的相对关系是恒定的。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条