1) Square tube confined reinforced concrete (STRC)
方管钢筋混凝土柱
2) reinforced concrete square columns
钢筋混凝土方柱
1.
Based on the experiment of strengthening axial compression reinforced concrete square columns wrapped with domestic carbon fiber sheet(CFS),stress-strain relation of concrete confined and factors of influencing strengthening efficiency are analyzed.
结果表明:碳纤维布包裹加固钢筋混凝土方柱,能有效提高其轴心抗压极限承载力,大大改善其延性。
3) reinforced concrete pipe column
钢筋混凝土管柱
1.
Analysis of the horizontal bearing performance of reinforced concrete pipe column;
钢筋混凝土管柱水平承载力分析
2.
Hereon, its substructure — Large-Size reinforced concrete pipe column(RCPC) are applied to investigate the seismic behavior through pseudo static test, to obtain reaction indicator and parameter and hold basal mechanical behavior and rule of component under seismic.
本文是对大型火力发电厂空气冷却设备—空冷岛中冷凝器支架结构系统在环境与工作条件下的结构性能试验研究的一部分,研究其下部结构—大尺寸钢筋混凝土管柱的抗震性能。
3.
By means of the plastic hinge method,an elasto-plastic model for a vertical hybrid structure consisting of reinforced concrete pipe columns and steel truss was established.
利用集中塑性铰有限元模型,对钢筋混凝土管柱-钢桁架竖向混合结构进行了动力弹塑性计算,分析了结构的破坏模式,依据基于结构内容物的抗震性能指标,评价了该结构的抗震性能。
4) concrete-filled steel square tubular column
方钢管混凝土柱
1.
Method for calculation of skeleton curves of connections of concrete-filled steel square tubular columns with inner diaphragms;
方钢管混凝土柱内隔板式节点骨架曲线的确定方法
2.
Discussion on the types of concrete-filled steel square tubular column and steel beam joint;
方钢管混凝土柱—钢梁节点形式探讨
3.
Experimental research and theoretical analysis on flexural capacity of connections for concrete-filled steel square tubular columns with inner diaphragms;
方钢管混凝土柱内隔板式节点的抗弯承载力研究
5) concrete-filled square steel tubular column
方钢管混凝土柱
1.
Experimental study on seismic performance of vertical stiffener joints between concrete-filled square steel tubular column and steel beam;
方钢管混凝土柱与钢梁的外肋环板节点抗震性能试验研究
2.
Experimental study on load-bearing capability of connection between concrete-filled square steel tubular column and steel beam;
方钢管混凝土柱-钢梁节点承载力试验研究
3.
Tensile behavior of connection between concrete-filled square steel tubular column and steel beam;
方钢管混凝土柱—钢梁节点静力受拉性能研究
6) rectangular concrete-filled tubular column
方钢管混凝土柱
1.
Many researches have been researched about Rectangular concrete-filled tubular in and out our country, most focus on performance of rectangular concrete-filled tubular column and design methods.
方钢管混凝土柱具有较大的抗弯抗剪能力和良好的耗能能力,其外形规则,有利于梁柱连接及配合建筑设计,因此有着较好的发展应用前景。
补充资料:钢筋混凝土柱
用钢筋混凝土材料制成的柱。是房屋、桥梁、水工等各种工程结构中最基本的承重构件,常用作楼盖的支柱、桥墩、基础柱、塔架和桁架的压杆。
分类 按照制造和施工方法分为现浇柱和预制柱。现浇钢筋混凝土柱整体性好,但支模工作量大。预制钢筋混凝土柱施工比较方便,但要保证节点连接质量。
按配筋方式分为普通钢箍柱、螺旋形钢箍柱和劲性钢筋柱。普通钢箍柱适用于各?纸孛嫘巫吹闹腔镜摹⒅饕睦嘈停胀ǜ止坑靡栽际菹蚋纸畹暮嵯虮湮弧B菪胃止恐梢蕴岣吖辜某性啬芰Γ孛嬉话闶窃残位蚨啾咝巍>⑿愿纸罨炷林谥哪诓炕蛲獠颗渲眯透郑透址值:艽笠徊糠趾稍兀酶至看螅杉跣≈亩厦婧吞岣咧母斩龋辉谖唇焦嗷炷燎埃男透止羌芸梢猿惺苁┕ず稍睾图跎倌0逯С庞貌摹S酶止茏魍饪牵诮交炷恋母止芑炷林蔷⑿愿纸钪牧硪恢中问剑?钢和混凝土组合结构)。
按受力情况分为中心受压柱和偏心受压柱,后者是受压兼受弯构件。工程中的柱绝大多数都是偏心受压柱。
截面形式和配筋构造 选择柱的截面形式主要根据工程性质和使用要求确定,也要便于施工和制造、节约模板和保证结构的刚性。方形柱和矩形柱的截面模板最省,制做简便,使用广泛。方形适用于接近中心受压柱的情况;矩形是偏心受压柱截面的基本形式。单层厂房柱的弯矩较大,为了减轻自重、节约混凝土,同时满足强度和刚度要求,常采用薄壁工形截面的预制柱。当厂房的吊车吨位较大,根据吊车定位尺寸,需要加大柱截面高度时,为了节约和有效利用材料,可采用空腹格构式的双肢柱。双肢柱可以是现浇的或预制的,腹杆可做成斜的或水平的。
为了充分发挥混凝土抗压强度高的优点,当柱承重较大时,通常采用较高的混凝土标号。纵向受力钢筋的数量,根据强度计算决定。为了保证施工时钢筋骨架的刚度及使用时柱的刚度,纵向受力筋应采用较大直径,如果同时用几种直径的纵向受力钢筋,应将大直径的钢筋设在骨架的四角上。横向箍筋与纵向钢筋连接牢固,有助于增加钢筋骨架的刚性。焊接骨架更能提高骨架刚性和便于整个骨架吊装。箍筋的作用是:连接纵向钢筋形成钢筋骨架;作为纵筋的支点,减少纵向钢筋的纵向弯曲变形;承受柱的剪力;使柱截面核心内的混凝土受到横向约束而提高承载能力,因此箍筋的间距不宜过大。在应力复杂和应力集中的部位(如柱和其他构件连接处)及配筋构造上的薄弱处(如纵向钢筋接头处),箍筋还需要加密。尤其是在抗震结构中,柱节点附近箍筋加密,是提高结构后期抗变形能力的一种有效办法。对于抗震柱还需特别注意保证纵向钢筋和箍筋的锚固构造要求。对于截面较大、纵向钢筋根数较多的柱,还应采用不同形式的多环式箍筋,以保证钢筋骨架的刚性和纵向钢筋作用的有效性。
螺旋形钢箍能起到有效地围箍核芯混凝土的作用,因此,螺旋形钢箍的面积和间距需根据计算确定,并沿柱高连续配设或采用密排的单独闭合环。
计算原则 钢筋混凝土轴心受压柱,当配置普通箍筋时,柱的正截面强度按下式计算:
式中N为设计纵向力;嗘为钢筋混凝土柱的纵向弯曲系数,随柱的长细比而定;fcc为混凝土轴心受压设计强度;A为构件截面面积;f╒为纵向钢筋抗压设计强度;A▂为纵向钢筋截面积。
当采用螺旋形箍筋时,轴心受压的正截面强度计算,按设计规范规定的公式进行。
偏心受压柱的正截面强度,按两种破坏形态考虑:①大偏心。当受压区高度不大于一定数值时,破坏从截面受拉区开始,表现为受拉钢筋先屈服。②小偏心。受压区高度大于一定数值时,破坏从截面内混凝土受压较大的应力边缘开始,表现为混凝土压碎。
当柱截面尺寸、混凝土强度、钢筋的强度和面积为已知时,可以算出达到强度极限时偏心受压构件的轴力N和弯矩M的抵抗值,并绘成"轴力-弯矩相关图"(N-M图)。N-M图概括地描述了偏心受压构件的强度性能。cb段属于小偏心受压,ab段属于大偏心受压,a点相当于受弯,c点相当于中心受压。位于曲线内侧的d点表示构件的N和M值未达到强度极限,构件安全;位于外侧的e点表示算出的构件的N和M值大于强度极限时的N和M值,构件不安全。
分类 按照制造和施工方法分为现浇柱和预制柱。现浇钢筋混凝土柱整体性好,但支模工作量大。预制钢筋混凝土柱施工比较方便,但要保证节点连接质量。
按配筋方式分为普通钢箍柱、螺旋形钢箍柱和劲性钢筋柱。普通钢箍柱适用于各?纸孛嫘巫吹闹腔镜摹⒅饕睦嘈停胀ǜ止坑靡栽际菹蚋纸畹暮嵯虮湮弧B菪胃止恐梢蕴岣吖辜某性啬芰Γ孛嬉话闶窃残位蚨啾咝巍>⑿愿纸罨炷林谥哪诓炕蛲獠颗渲眯透郑透址值:艽笠徊糠趾稍兀酶至看螅杉跣≈亩厦婧吞岣咧母斩龋辉谖唇焦嗷炷燎埃男透止羌芸梢猿惺苁┕ず稍睾图跎倌0逯С庞貌摹S酶止茏魍饪牵诮交炷恋母止芑炷林蔷⑿愿纸钪牧硪恢中问剑?钢和混凝土组合结构)。
按受力情况分为中心受压柱和偏心受压柱,后者是受压兼受弯构件。工程中的柱绝大多数都是偏心受压柱。
截面形式和配筋构造 选择柱的截面形式主要根据工程性质和使用要求确定,也要便于施工和制造、节约模板和保证结构的刚性。方形柱和矩形柱的截面模板最省,制做简便,使用广泛。方形适用于接近中心受压柱的情况;矩形是偏心受压柱截面的基本形式。单层厂房柱的弯矩较大,为了减轻自重、节约混凝土,同时满足强度和刚度要求,常采用薄壁工形截面的预制柱。当厂房的吊车吨位较大,根据吊车定位尺寸,需要加大柱截面高度时,为了节约和有效利用材料,可采用空腹格构式的双肢柱。双肢柱可以是现浇的或预制的,腹杆可做成斜的或水平的。
为了充分发挥混凝土抗压强度高的优点,当柱承重较大时,通常采用较高的混凝土标号。纵向受力钢筋的数量,根据强度计算决定。为了保证施工时钢筋骨架的刚度及使用时柱的刚度,纵向受力筋应采用较大直径,如果同时用几种直径的纵向受力钢筋,应将大直径的钢筋设在骨架的四角上。横向箍筋与纵向钢筋连接牢固,有助于增加钢筋骨架的刚性。焊接骨架更能提高骨架刚性和便于整个骨架吊装。箍筋的作用是:连接纵向钢筋形成钢筋骨架;作为纵筋的支点,减少纵向钢筋的纵向弯曲变形;承受柱的剪力;使柱截面核心内的混凝土受到横向约束而提高承载能力,因此箍筋的间距不宜过大。在应力复杂和应力集中的部位(如柱和其他构件连接处)及配筋构造上的薄弱处(如纵向钢筋接头处),箍筋还需要加密。尤其是在抗震结构中,柱节点附近箍筋加密,是提高结构后期抗变形能力的一种有效办法。对于抗震柱还需特别注意保证纵向钢筋和箍筋的锚固构造要求。对于截面较大、纵向钢筋根数较多的柱,还应采用不同形式的多环式箍筋,以保证钢筋骨架的刚性和纵向钢筋作用的有效性。
螺旋形钢箍能起到有效地围箍核芯混凝土的作用,因此,螺旋形钢箍的面积和间距需根据计算确定,并沿柱高连续配设或采用密排的单独闭合环。
计算原则 钢筋混凝土轴心受压柱,当配置普通箍筋时,柱的正截面强度按下式计算:
式中N为设计纵向力;嗘为钢筋混凝土柱的纵向弯曲系数,随柱的长细比而定;fcc为混凝土轴心受压设计强度;A为构件截面面积;f╒为纵向钢筋抗压设计强度;A▂为纵向钢筋截面积。
当采用螺旋形箍筋时,轴心受压的正截面强度计算,按设计规范规定的公式进行。
偏心受压柱的正截面强度,按两种破坏形态考虑:①大偏心。当受压区高度不大于一定数值时,破坏从截面受拉区开始,表现为受拉钢筋先屈服。②小偏心。受压区高度大于一定数值时,破坏从截面内混凝土受压较大的应力边缘开始,表现为混凝土压碎。
当柱截面尺寸、混凝土强度、钢筋的强度和面积为已知时,可以算出达到强度极限时偏心受压构件的轴力N和弯矩M的抵抗值,并绘成"轴力-弯矩相关图"(N-M图)。N-M图概括地描述了偏心受压构件的强度性能。cb段属于小偏心受压,ab段属于大偏心受压,a点相当于受弯,c点相当于中心受压。位于曲线内侧的d点表示构件的N和M值未达到强度极限,构件安全;位于外侧的e点表示算出的构件的N和M值大于强度极限时的N和M值,构件不安全。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条