1) lognormal population
对数正态总体
1.
The paper is on the hypothesis testing of Unknown parameter σ~2 in lognormal population with the testing theory of likelihood ratio.
应用似然比检验理论 ,研究了对数正态总体中未知参数 σ2的假设检验问题 。
2.
In this paper, we study the test of hypothesis of the lognormal population by applying likelihood ratio.
本文应用似然比检验理论,研究了对数正态总体的假设检验问题。
3) the parameters of nonnormal population
非正态总体参数
4) normal population
正态总体
1.
Application of orthogonal transformation on normal population;
正交变换在正态总体中的应用
2.
Minimax predictor of linear predictable variable in normal populations;
正态总体中线性可预测变量的Minimax预测
3.
Considering two normal populations with unknown means and unknown variances,a likelihood ratio test of equality of two normal population standard deviations under condition to equality of proportions of means and standard deviations of two normal populations was presented.
考虑两个正态总体的标准差在均值和标准差比等值条件下的似然比检验问题。
5) normal distribution
正态总体
1.
Based on the definition of the confidence interval, using the methed of numerical calculation, the minimum length of confidence interval for the variance of the normal distribution are found.
99,在样本容量n从3到30的范围内,在正态总体均值未知的情形下,求得了方差σ2的最短置信区间,并对用通常方法求得的置信区间的长度与最短置信区间的长度进行了对比分析。
6) The parametric linear function of normal distribution population
正态总体参数线性函数
补充资料:对数正态分布
分子式:
CAS号:
性质:若一组测定值取对数后遵从正态分布,则称其遵循对数正态分布。对数正态随机变量x的概率密度函数为,式中μlogx与σlogx2分别为变量logx分布的均值与方差。
CAS号:
性质:若一组测定值取对数后遵从正态分布,则称其遵循对数正态分布。对数正态随机变量x的概率密度函数为,式中μlogx与σlogx2分别为变量logx分布的均值与方差。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条