1) asymptotic estimate
渐近估计
1.
Singularly perturbed boundary value problems for a class of third order nonlinear differential equations :εx\+=f(t,x,x\+′,x\+″,ε),x(0)=A ,x\+′(0)=x\+′(1),x\+″(0)=x\+″(1),is studied by upper and lower solutions, the existence and asymptotic estimates of solution are obtained.
研究了三阶非线性方程奇摄动两点边值问题:εx =f(t,x,x′,x″,ε),x(0)=A,x′(0)=x′(1),x″(0)=x″(1),得到了解的存在性和渐近估计。
2.
The periodic boundary value problem on integral differential equation of Volterra mode bearing minor parameter in a second order derivative term is studied,namely,εu″=f(t,u,Tu,(ε)u′,ε),u(0)=u(1),u′(0)=u′(1),\%thus, both the existence and the asymptotic estimate of solution to the problem are found out.
研究了二阶导数项带小参数的一类Volterra型积分微分方程周期边值问题:εu″=f(t,u,Tu,ω(ε)u′,ε),u(0)=u(1),u′(0)=u′(1),得到了解的存在性和渐近估计。
3.
An asymptotic estimate for integral remainder of Simpson formula and a consequence of inverse problem of Simpson formula are given in this article.
对Simpson公式的积分余项作出渐近估计,并给出了Simpson公式反问题的一个结果。
2) asymptotic estimates
渐近估计
1.
By using WZ method, the asymptotic estimates for some special cases of a kind of combinatorial sum were obtained, then some general results were conjectured from them and proved by using analytic method.
利用WZ方法对一类组合和的一些特殊情形给出了其渐近估计,然后猜测出一般结果,最后利用分析的方法给予了严格证明,并且通过引进参数,将结论作了极大的拓广,由此产生了一系列目前无法解释的数学现象和无法解决的数学问题。
2.
The existence result and the asymptotic estimates of the solution in the maximum norm are examined by means of some fixed point theorems.
在适当的条件下证明了解的存在性,并给出解的渐近估计。
3.
The existence and asymptotic estimates of solution for nonlinear boundary value problem of Volterra type integro-differential-difference equation by means of differential inequality theories is studied.
在适当条件下,构造具体的上下解,得到了解的存在性和渐近估计。
3) Asymptotic estimation
渐近估计
1.
The author studies the estimate of θ in the Finite Increment Theorem, and obtains its asymptotic estimation.
研究了有限增量定理中θ的估值问题 ,获得它的一个渐近估计。
2.
Using the theory of differential inequalities, the expression of asymptotic estimation is given and proved.
根据电流变液中球形颗粒的运动模型 ,研究了颗粒质量很小时 ,电流变液中颗粒运动的渐近状态 ,利用微分不等式理论 ,给出了相应运动的渐近估
3.
Using Euler —Maclaurin summation formula, we get the general re sults for asymptotic estimations of finite sums.
本文利用Euler— Maclaurin求和公式得到了有限和渐近估计的一般结果,作为特 例,改进和推广了华罗庚[1]的两个有广泛应用的定理,还给出了某些有趣的应用。
4) asymptotic formulae
渐近估计
1.
On the asymptotic formulae of approximation of unbounded continuous functions;
关于无界连续函数逼近的渐近估计
2.
By using multiplier-enlargement,the asymptotic estimation of approximation of unbounded continous functions with positive linear operaters is discussed, with general asymptotic formulae given.
利用扩展乘数法讨论了线性正算子改造为逼近无界连续函数的渐近估计,给出了具有一般性的渐近 公式。
3.
By using of the method of multiplier-enlargement, discusses the asymptotic estimation of approximation for unbounded continuous functions of several variables by linear positive operators defined on k-dimensional Euclidean space, and gives general asymptotic formulae.
利用扩展乘数法讨论了高维欧氏空间上线性正算子改造为逼近多元无界连续函数 的渐近估计,给出了具有一般性的渐近公式。
5) approximate estimate of spectrum
谱渐近估计
6) asymptotic ML estimation
渐近ML估计
补充资料:渐近公式
渐近公式
asymptotic formula
渐近公式}朋yolp肠cl栩.lula二~Irror~绷如甲My月a} 包含符号。,O或等价记号一(函数的渐近相等(as,mPtotiee甲ality))的公式 渐近公式的例f 牡n一丫二一x十口(义舌%*0、 )5戈l+‘)(义‘),、。0;茸、十芜川、一丫’℃一,关二 “(一‘,一下:_于“一笑(7r以)是不超过二的素数的个数,. ‘M,B因脚月撰【补注】关于符号。O和一的意义,例如见阵11或!AZ}.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条