茫茫宇宙之中,存在着这样一种极其神秘的天体叫“黑洞”(black hole)。黑洞的物质密度极大,引力极强,任何物质经过它的附近,都要被它吸引进去,再也不能出来,包括光线也是这样,因此是一个不发光的天体黑洞的名称由此而来。由于不发光,人们无法通过肉眼或观测仪器发觉它的存在,而只能理论计算或根据光线经过其附近时产生的弯曲现象而判断其存在。虽然理论上说,银河系中作为恒星演化终局的黑洞总数估计在几百万到几亿个之间,但至今被科学家确认了的黑洞只有天鹅座x-1、大麦哲伦云x-3、ao602-00等极有限的几个。证认黑洞成为21世纪的科学难题之一。
数学被誉为“科学之母”,在现代科技的发展中起着定海神针般的作用,而现代的战争更是被认为将是一场“数学家和信息学家的战争”。在信息战中,要运用数学作大量的模拟运算,运用数学在空间作精确的定位,运用数学对导弹作精密制导,运用数学来研究保密通信的算法,运用数学作为网络攻击利器。
无独有偶,在数学中也有这种神秘的黑洞现象,对于数学黑洞,无论怎样设值,在规定的处理法则下,最终都将得到固定的一个值,再也跳不出去了,就像宇宙中的黑洞可以将任何物质(包括运行速度最快的光)牢牢吸住,不使它们逃脱一样。这就对密码的设值破解开辟了一个新的思路。
【一】123黑洞
(即西西弗斯串)
数学中的123就跟英语中的abc一样平凡和简单。然而,按以下运算顺序,就可以观察到这个最简单的
黑洞值:
设定一个任意数字串,数出这个数中的偶数个数,奇数个数,及这个数中所包含的所有位数的总数,
例如:1234567890,
偶:数出该数数字中的偶数个数,在本例中为2,4,6,8,0,总共有 5 个。
奇:数出该数数字中的奇数个数,在本例中为1,3,5,7,9,总共有 5 个。
总:数出该数数字的总个数,本例中为 10 个。
新数:将答案按 “偶-奇-总” 的位序,排出得到新数为:5510。
重复:将新数5510按以上算法重复运算,可得到新数:134。
重复:将新数134按以上算法重复运算,可得到新数:123。
结论:对数1234567890,按上述算法,最后必得出123的结果,我们可以用计算机写出程序,测试出对任意一个数经有限次重复后都会是123。换言之,任何数的最终结果都无法逃逸123黑洞。
【二 】 任意n位数的归敛的卡普雷卡尔黑洞
取任何一个4位数(4个数字均为同一个数字的例外),将组成该数的4个数字重新组合成可能的最大数和可能的最小数,再将两者的差求出来;对此差值重复同样的过程(例如:开始时取数8028,最大的重新组合数为8820,最小的为0288,二者的差8532。重复上述过程得出8532-2358=6174),最后总是达到卡普雷卡尔黑洞:6174。称之“黑洞”是指再继续运算,都重复这个数,“逃”不出去。把以上计算过程称为卡普雷卡尔运算,这个现象称归敛,其结果6174称归敛结果。
一, 任意n位数都会类似4位数那样归敛(1、2位数无意义) . 3位数归敛到唯一一个数495; 4位数归敛到唯一一个数6174; 7位数归敛到唯一一个数组( 8个7位数组成的循环数组______称归敛组);其它每个位数的数归敛结果分别有若干个,归敛数和归敛组兼而有之(如14位数____共有9×10的13次方个数____的归敛结果有6个归敛数,21个归敛组).
一旦进入归敛结果,继续卡普雷卡尔运算就在归敛结果反复循环,再也“逃”不出去。