1)  vectorization
矢量化技术
2)  vector
矢量
1.
Research on water flooding effect improved by vectorial well arrangement for reservoirs with permeability heterogeneity in plane;
矢量井网改善平面非均质油藏水驱开发效果研究
2.
Random Directive Vector Dimension Chain and Its Application in Machine Tool Design and Manufacture;
随机方向矢量尺寸链及其在机床设计制造中的应用
3)  vectors
矢量
1.
To solve the problems associated with Direct Torque Control(DTC) of Permanent Magnet Synchronous Mo-tor(PMSM) using conventional voltage space vectors,such as high current,flux and torque ripple,a novel DTC strategy based on voltage space vectors and stator flux linkage sectors subdivision is proposed.
由于采用传统的电压空间矢量开关表控制逆变器动作的永磁同步电机(Permanent Magnet Synchronous Motor,简称PMSM)直接转矩控制(Direct Torque Control,简称DTC)存在着电流畸变、磁链和转矩脉动大的缺陷。
2.
This paper presents a novel speed-sensorless direct torque control method based on vectors subdivision,analyses and compares the performance of traditional six-voltage vector control and twelve-voltage vector s,finally provides the experimental results of the system implementation using dsPIC30F6010.
传统的直接转矩控制在进行矢量切换时会造成磁链幅值的显著变化,从而引起磁链轨迹畸变。
4)  vector control
矢量控制
1.
Study of frequency governor used in lathe principal axis based on vector control;
基于矢量控制的车床主轴变频调速研究
2.
Trouble analysis and troubleshooting of high power electric drive based on vector control;
基于矢量控制的大功率传动故障分析及处理
3.
Application of vector control variable frequency speed regulating system in high-speed wire rod line;
矢量控制变频调速系统在高速线材轧线上的应用
5)  cutter axis vector
刀轴矢量
1.
The interpolation cutter axis vectors,which turn gradually and evenly,were obtained using smoothing interpolation algorithm of spatial vector.
为了解决数控刻楦中刀轴矢量方向相对鞋楦表面法向频繁变换而造成冲击或发生干涉等问题,提出一种刀轴矢量平滑化插值方法。
6)  vector electric potential
矢量电位
1.
First using the Maxwell system and the method of approximation in item-by-item we establish the analytic solution for vector electric potential.
首先,利用Maxwell方程组和逐次逼近法推导出矢量电位在非正交坐标系下的解析解;然后,通过有限差分法计算接收线圈处的感应电动势,得到视电导率的值;最后,计算了无井无侵地层模型在不同厚度和倾斜角度影响下的响应,计算结果与理论解及前人结果具有很好的一致性。
参考词条
补充资料:推力矢量技术

简而言之,推力矢量技术就是通过偏转发动机喷流的方向,从而获得额外操纵力矩的技术。

我们知道,作用在飞机上的推力是一个有大小、有方向的量,这种量被称为矢量。

然而,一般的飞机上,推力都顺飞机轴线朝前,方向并不能改变,

所以我们为了强调这一技术中推力方向可变的特点,就将它称为推力矢量技术。

不采用推力矢量技术的飞机,发动机的喷流都是与飞机的轴线重合的,产生的推力也沿轴线向前,

这种情况下发动机的推力只是用于克服飞机所受到的阻力,提供飞机加速的动力。

采用推力矢量技术的飞机,则是通过喷管偏转,利用发动机产生的推力,获得多余的控制力矩,实现飞机的姿态控制。

其突出特点是控制力矩与发动机紧密相关,而不受飞机本身姿态的影响。

因此,可以保证在飞机作低速、大攻角机动飞行而操纵舵面几近失效时利用推力矢量提供的额外操纵力矩来控制飞机机动。

第四代战斗机要求飞机要具有过失速机动能力,即大迎角下的机动能力。

推力矢量技术恰恰能提供这一能力,是实现第四代战斗机战术、技术要求的必然选择。

我们可以通过图解来了解推力矢量技术的原理。

普通飞机的飞行迎角是比较小的,在这种状态下飞机的机翼和尾翼都能够产生足够的升力,保证飞机的正常飞行。

当飞机攻角逐渐增大,飞机的尾翼将陷入机翼的低能尾流中,造成尾翼失速,飞机进入尾旋而导致坠毁。

这个时候,纵然发动机工作正常,也无法使飞机保持平衡停留在空中。

然而当飞机采用了推力矢量之后,发动机喷管上下偏转,产生的推力不再通过飞机的重心,产生了绕飞机重心的俯仰力距,

这时推力就发挥了和飞机操纵面一样的作用。由于推力的产生只与发动机有关系,这样就算飞机的迎角超过了失速迎角,

推力仍然能够提供力矩使飞机配平,只要机翼还能产生足够大的升力,飞机就能继续在空中飞行了。

而且,通过实验还发现推力偏转之后,不仅推力能产生直接的投影升力,还能通过超环量效应令机翼产生诱导升力,使总的升力提高。

装备了推力矢量技术的战斗机由于具有了过失速机动能力,拥有极大的空中优势,

美国用装备了推力矢量技术的x-31验证机与f-18做过模拟空战,结果x-31以1:32的战绩遥遥领先于f-18。

使用推力矢量技术的飞机不仅其机动性大大提高,而且还具有前所未有的短距起落能力,

这是因为使用推力矢量技术的飞机的超环量升力和推力在升力方向的分量都有利于减小飞机的离地和接地速度,缩短飞机的滑跑距离。

另外,由于推力矢量喷管很容易实现推力反向,飞机在降落之后的制动力也大幅提高,因此着陆滑跑距离更加缩短了。

如果发动机的喷管不仅可以上下偏转,还能够左右偏转,那么推力不仅能够提供飞机的俯仰力矩,还能够提供偏航力矩,这就是全矢量飞机。

推力矢量技术的运用提高了飞机的控制效率,使飞机的气动控制面,例如垂尾和立尾可以大大缩小,从而飞机的重量可以减轻。

另外,垂尾和立尾形成的角反射器也因此缩小,飞机的隐身性能也得到了改善。

推力矢量技术是一项综合性很强的技术,它包括推力转向喷管技术和飞机机体/推进/控制系统一体化技术。

推力矢量技术的开发和研究需要尖端的航空科技,反映了一个国家的综合国力,目前世界上只有美国和俄罗斯掌握了这一技术,

f-22和su-37就是两国装备了这一先进技术的各自代表机种。

我国现在也展开了对推力矢量技术的预先研究,并取得了一定的成果,相信在不远的将来,我们的飞机也能够装备上这一先进技术翱翔蓝天,

增强我国的国防实力。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。