1) flying capacitor
悬浮电容
1.
Development of a novel PWM controller for flying capacitor 5-level inverter;
悬浮电容式五电平变频PWM控制器设计
2) electromagnetic suspension
电磁悬浮
1.
Application of fuzzy-PID control to electromagnetic suspension platform;
模糊PID控制在电磁悬浮平台中的应用
2.
Then we designed a H∞ robust controller to improve the rigidity of electromagnetic suspension air-gap.
然后针对扰动设计了可以提高电磁悬浮气隙高度之刚度的H∞鲁棒控制器。
3.
Taking the magnetic field of magnetic levitation ball control system as an example,the FEM analysis method for the axial magnetic field have been described, which in nonlinear on the base of analysis of the principles of electromagnetic suspension control system.
在分析电磁悬浮控制系统基本原理的基础上,以磁浮球控制系统的磁场为例,论述了轴对称非线性磁场的有限元分析方法,建立了有限元方程,应用二维磁场有限元软件对在不同的悬浮气隙下的磁场吸力进行了精确的计算。
3) electromagnetic levitation
电磁悬浮
1.
On the construction of electromagnetic levitation melting system and levitating force;
电磁悬浮熔炼系统的结构及其悬浮力的研究
2.
Theory analysis of steady magnetic field on rotational stability of electromagnetic levitation melting;
直流磁场控制电磁悬浮熔炼旋转稳定性的理论分析
3.
Finite element analysis of an electromagnetic levitation micro-actuator
电磁悬浮式微驱动器的有限元分析研究
4) electromagnetic suspension
电磁-悬浮
1.
Effect of electromagnetic suspension casting on grain refinement for wrought magnesium alloy;
电磁-悬浮铸造对变形镁合金晶粒细化的影响
2.
The electromagnetic suspension casting of AZ61 wrought magnesium alloy was studied using electromagnetic stirring technique and the suspension casting during the casting process.
结果表明:利用电磁-悬浮铸造制备的镁合金,其显微组织细化,晶间β相细小并且网状结构减少,当CaC2悬浮剂加入量(质量分数)为0。
5) Suspension electrolysis
悬浮电解
1.
Therefore we have developed a new process of suspension electrolysis for treating iron blend.
对不同悬浮电解液中高铁闪锌矿阳极氧化产物进行研究,结果表明高铁闪锌矿在硫酸锌、硫酸铵和硫酸的悬浮电解液中能够有效被氧化,闪锌矿中>90%的锌进入电解液,从而推导出高铁闪锌矿悬浮电解的全新处理工艺。
2.
According to this analysis, technics route was determined as suspension electrolysis and solvent extraction.
在此基础上提出了悬浮电解法提纯铜与溶剂萃取法提纯金的复合工艺路线。
6) floating potential
悬浮电位
1.
AISI 316L austenitic stainless steel was nitirded in floating potential and anodic (zero) potential at low temperature by active screen plasma nitriding (ASPN).
用活性屏离子渗氮技术分别对处于悬浮电位和阳极电位的AISI316L奥氏体不锈钢进行低温渗氮处理。
2.
AISI 316L austenitic stainless steel in anodic(zero) potential was nitirded at low temperature by active screen plasma nitriding,and compared the microstructures,morphologies,phase structures,microhardness and corrosion resistance of the nitrided layers with those of the samples nitrided in floating potential.
用活性屏离子渗氮技术对处于阳极电位的AISI 316L奥氏体不锈钢进行低温渗氮处理,并将渗氮层的组织、形貌、相结构、显微硬度和耐蚀性能与在悬浮电位下处理的试样作对比。
3.
In this paper, an algorithm to compute 2 D floating potential is put forward.
本文给出了一种求解悬浮电位的有限元算法 ,并利用它对二维电场 (平面场 ,轴对称场 )的悬浮电位进行了求解。
补充资料:电容和电容器
电容是描述导体或导体系容纳电荷的性能的物理量。
孤立导体的电容 把电荷Q充到孤立导体上,它的电位U与Q成正比,Q/U与Q无关,仅取决于孤立导体的形状和大小,它反映了孤立导体容纳电荷的能力,因而定义为孤立导体的电容,用C表示,C=Q/U。孤立导体的电容等于导体升高单位电位所需的电量。电容的国际制单位为法拉,简称法,用F表示,是一个非常大的单位。如将地球看作孤立导体,其电容只有709×-6法,所以通常采用μF(=-6F)或pF(=10-12F)为单位。
如果把另一个带负电的导体移近孤立导体,后者的电位就下降,可见非孤立导体的电位不仅与它自己所带电量的多少有关,还取决于周围其他导体的相对位置。
电容器 如果带电导体A被一封闭导体空腔B所包围,则因空腔的屏蔽作用,AB之间的电位差不受腔外带电体的影响,A所带的电量同A及B的电位差成比例。
实际上,腔体封密的限制并不太高,即使A、B二导体为间距不大的一对导体板(同轴圆柱或平行平面板),如果QA为导体A上与导体B相对的侧面上的电量,则上述比例关系仍保持不变。这对互相绝缘的导体构成电容器,这对导体则称为电容器的一对极板。
把电压U接到电容器的一对极板上,它们得到大小相等、符号相反的电荷±Q,电位差UA-UB=U,则定义电容器的电容为C=Q/U。电容是电容器的特性常数,取决于两导体的形状、大小、相对位置;当导体间充有绝缘材料时,电容器的电容还与绝缘材料的相对电容率εr有关。如果εr与电场强度有关,则电容C将随所加电压U而变化,这种电容器叫做非线性电容器。
电容的倒数1/C=U/Q=S叫做倒电容。
简单电容器的电容公式 如表。
电容器的并联和串联 n个电容器并联如图a,它们的电压都等于u,充有的电荷分别为q1、q2、...、qn。此并联组合得到的总电荷 q=,则 C=,即并联电容器组的总电容等于各电容的总和。
n个电容器串联如图b,它们充有相等的电荷q, 电压则分别为u1、u2、...、un。此串联组合的总电压u=,则S =,即串联电容器的总倒电容等于各倒电容的总和。
电容器的性能参数和用途 电容是电容器的主要性能参数之一。此外,实际电容器的性能参数还有耐压(或工作电压)、损耗和频率响应,它们分别取决于所充电介质的击穿场强、媒质损耗和对频率的响应。
实际电容器的种类繁多,用途各异。大型的电力电容器主要用于提高用电设备的功率因数,以减少输电损失和充分发挥电力设备的效率。电子学中广泛采用电容器,以提供交流旁路稳定电压,用作级间交流耦合,以及用作滤波器、移相器、振荡器等等。
孤立导体的电容 把电荷Q充到孤立导体上,它的电位U与Q成正比,Q/U与Q无关,仅取决于孤立导体的形状和大小,它反映了孤立导体容纳电荷的能力,因而定义为孤立导体的电容,用C表示,C=Q/U。孤立导体的电容等于导体升高单位电位所需的电量。电容的国际制单位为法拉,简称法,用F表示,是一个非常大的单位。如将地球看作孤立导体,其电容只有709×-6法,所以通常采用μF(=-6F)或pF(=10-12F)为单位。
如果把另一个带负电的导体移近孤立导体,后者的电位就下降,可见非孤立导体的电位不仅与它自己所带电量的多少有关,还取决于周围其他导体的相对位置。
电容器 如果带电导体A被一封闭导体空腔B所包围,则因空腔的屏蔽作用,AB之间的电位差不受腔外带电体的影响,A所带的电量同A及B的电位差成比例。
实际上,腔体封密的限制并不太高,即使A、B二导体为间距不大的一对导体板(同轴圆柱或平行平面板),如果QA为导体A上与导体B相对的侧面上的电量,则上述比例关系仍保持不变。这对互相绝缘的导体构成电容器,这对导体则称为电容器的一对极板。
把电压U接到电容器的一对极板上,它们得到大小相等、符号相反的电荷±Q,电位差UA-UB=U,则定义电容器的电容为C=Q/U。电容是电容器的特性常数,取决于两导体的形状、大小、相对位置;当导体间充有绝缘材料时,电容器的电容还与绝缘材料的相对电容率εr有关。如果εr与电场强度有关,则电容C将随所加电压U而变化,这种电容器叫做非线性电容器。
电容的倒数1/C=U/Q=S叫做倒电容。
简单电容器的电容公式 如表。
电容器的并联和串联 n个电容器并联如图a,它们的电压都等于u,充有的电荷分别为q1、q2、...、qn。此并联组合得到的总电荷 q=,则 C=,即并联电容器组的总电容等于各电容的总和。
n个电容器串联如图b,它们充有相等的电荷q, 电压则分别为u1、u2、...、un。此串联组合的总电压u=,则S =,即串联电容器的总倒电容等于各倒电容的总和。
电容器的性能参数和用途 电容是电容器的主要性能参数之一。此外,实际电容器的性能参数还有耐压(或工作电压)、损耗和频率响应,它们分别取决于所充电介质的击穿场强、媒质损耗和对频率的响应。
实际电容器的种类繁多,用途各异。大型的电力电容器主要用于提高用电设备的功率因数,以减少输电损失和充分发挥电力设备的效率。电子学中广泛采用电容器,以提供交流旁路稳定电压,用作级间交流耦合,以及用作滤波器、移相器、振荡器等等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条