1) two-phase turbulence
两相紊流
1.
Based on the K-ε-Ap two-phase turbulence model, the two-phase turbulent flow through hydraulic turbine guide vanes are simulated by using the body-fitted coordinates, the staggered grid system and the SIMPLEC algorithm in the present work.
针对贯流式水轮机活动导叶内部固液两相亲流的三维数值模拟问题,基于N-S方程和两相紊流的。
2.
Based on the k- ε- Ap two-phase turbulence model and Finnie abrasion model, the two-phase turbulent flow and abrasion through hydraulic turbine guide vanes are simulated by using the body-fitted coordinates, the staggered grid system and the SIMPLEC algorithm in the present work.
本文报导了水轮机活动导叶内部固液两相紊流的三维数值分析结果和磨损预估结果。
3) liquid-solid two-phase flow model
固液两相流紊流模型
4) two stage turbulent mix
两级紊流混合
1.
The fluid dynamics equations of the liquid-gas ejector with two stage turbulent mix are established.
阐述喷射流体紊流混合装置的作用和应用,建立两级紊流混合速的液-气喷射器的流体动力学方程组。
5) relative intensity of turbulence
相对紊流强度
1.
The relative intensity of turbulence and velocity pulsation in exity of cross flow fan were studied byusing hot-wire anemometer measurements.
通过热线流速计等实验手段,对贯流风扇出口处紊流的相对紊流强度和速度脉动进行研究,得出了贯流风扇出口处相对索流强度的分布规律和速度脉动与贯流风扇扰动频率及扰动噪声的关系。
补充资料:层流和紊流
实际液体由于存在粘滞性而具有的两种流动形态。液体质点作有条不紊的运动,彼此不相混掺的形态称为层流。液体质点作不规则运动、互相混掺、轨迹曲折混乱的形态叫做紊流。它们传递动量、热量和质量的方式不同:层流通过分子间相互作用,紊流主要通过质点间的混掺。紊流的传递速率远大于层流。水利工程所涉及的流动,一般为紊流。
雷诺数 表征液流惯性力与粘滞力相对大小,可用以判别流动形态的无因次数,记作Re。雷诺数的定义式为:
式中ρ、μ、υ分别为液体的密度、动力粘滞系数、运动粘滞系数;υ、L为流动的特征速度和特征长度。雷诺数小时,粘性效应在整个流场中起主要作用,流动为层流。雷诺数大时,紊动混掺起决定作用,流动为紊流。对于同样的液流装置,由层流转换为紊流时的雷诺数恒大于紊流向层流转换的雷诺数。前者称上临界雷诺数,其值随试验条件而变,很不?榷ǎ缓笳叱葡铝俳缋着凳渲当冉衔榷ǎ杂谝话闾跫碌墓芰鳎ㄔ补苤本段卣鞒ざ龋厦嫫骄魉傥卣魉俣龋嘉?2300。
层流 只存在粘滞切应力。在简单的剪切流中,粘滞切应力:
式中为剪切变形速度,亦即速度沿垂直方向的变化率;μ为动力粘滞系数,只和液体种类及温度有关的常数。此式表达了著名的牛顿内摩擦定律。层流中摩擦阻力及沿程水头损失均与流速的一次方成正比,流速分布呈抛物线型。圆管层流流速分布如图1所示。
紊流 又称湍流。液体运动呈随机性,即速度、压强等均随时间、空间作不规则的脉动,是紊流的基本特征(图2)。可采用时间平均法,将任一物理量的瞬时值分解为时均值与脉动值,即:
式中u∞、ū∞、u'分别为某一点处沿x方向的瞬时流速、时均流速与脉动流速;p、圴、p'分别为某点处的瞬时压强、时均压强与脉动压强;T为适当选取进行平均的时段。
紊流中除粘滞切应力τ1外,还有紊流附加切应力τt。由纳维-斯托克斯方程导出紊流时均运动的雷诺方程,就会增添紊流附加应力,又称雷诺应力。如紊流时均速度分量仅有ūx=ūx(y),则有:
式中vt为紊动交换系数或涡旋运动粘滞系数。和运动粘滞系数υ不同,它不是单由物性决定的常数,而是和流动状态有关的变量。
关于τt或vt的计算,常用L.普朗特提出的动量传递理论,即:
式中l为混合长。显然。按照动量传递理论结合实验,已导出紊流的对数型速度分布公式,与实验结果比较接近。与层流相比较,紊流流速分布趋于均匀,摩擦阻力和水头损失增大,在充分发展的紊流中,沿程水头损失与流速的二次方成正比。
雷诺数 表征液流惯性力与粘滞力相对大小,可用以判别流动形态的无因次数,记作Re。雷诺数的定义式为:
式中ρ、μ、υ分别为液体的密度、动力粘滞系数、运动粘滞系数;υ、L为流动的特征速度和特征长度。雷诺数小时,粘性效应在整个流场中起主要作用,流动为层流。雷诺数大时,紊动混掺起决定作用,流动为紊流。对于同样的液流装置,由层流转换为紊流时的雷诺数恒大于紊流向层流转换的雷诺数。前者称上临界雷诺数,其值随试验条件而变,很不?榷ǎ缓笳叱葡铝俳缋着凳渲当冉衔榷ǎ杂谝话闾跫碌墓芰鳎ㄔ补苤本段卣鞒ざ龋厦嫫骄魉傥卣魉俣龋嘉?2300。
层流 只存在粘滞切应力。在简单的剪切流中,粘滞切应力:
式中为剪切变形速度,亦即速度沿垂直方向的变化率;μ为动力粘滞系数,只和液体种类及温度有关的常数。此式表达了著名的牛顿内摩擦定律。层流中摩擦阻力及沿程水头损失均与流速的一次方成正比,流速分布呈抛物线型。圆管层流流速分布如图1所示。
紊流 又称湍流。液体运动呈随机性,即速度、压强等均随时间、空间作不规则的脉动,是紊流的基本特征(图2)。可采用时间平均法,将任一物理量的瞬时值分解为时均值与脉动值,即:
式中u∞、ū∞、u'分别为某一点处沿x方向的瞬时流速、时均流速与脉动流速;p、圴、p'分别为某点处的瞬时压强、时均压强与脉动压强;T为适当选取进行平均的时段。
紊流中除粘滞切应力τ1外,还有紊流附加切应力τt。由纳维-斯托克斯方程导出紊流时均运动的雷诺方程,就会增添紊流附加应力,又称雷诺应力。如紊流时均速度分量仅有ūx=ūx(y),则有:
式中vt为紊动交换系数或涡旋运动粘滞系数。和运动粘滞系数υ不同,它不是单由物性决定的常数,而是和流动状态有关的变量。
关于τt或vt的计算,常用L.普朗特提出的动量传递理论,即:
式中l为混合长。显然。按照动量传递理论结合实验,已导出紊流的对数型速度分布公式,与实验结果比较接近。与层流相比较,紊流流速分布趋于均匀,摩擦阻力和水头损失增大,在充分发展的紊流中,沿程水头损失与流速的二次方成正比。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条