|
说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
|
|
1) three-dimensional partial model
三维节段模型
2) sectional model
节段模型
1.
Taking a bay bridge with a main span 688 m as an example,this paper investigates the influence of railing curbstone structure on the flutter stability of box main girder through sectional model wind tunnel test.
以某一主跨688 m的海港大桥为例,通过节段模型风洞试验研究栏杆缘石构造对箱形主梁颤振稳定性的影响。
2.
The three-component of aerodynamic force of a 1∶60 scale sectional model was tested for the 75 test cases including bridge deck without vehicles,bridge deck with vehicles and construction stage.
进行了1∶60缩尺模型试验,开展了桥面无车状态、桥面有车状态和施工状态下的75个试验工况节段模型测力试验研究,并利用获得的三分力系数进行了全桥静风响应分析。
3.
Based on the Shanghai Bridge over Yangtse River, the vortex-excited resonance of a 1:60 scale sectional model was tested in a TJ-1 wind tunnel, without or with vehicles at the attack angle of 0(, +3( and -3(, respectively.
以上海长江大桥为背景,在同济大学土木工程防灾国家重点实验室TJ-1边界层风洞中进行了1∶60缩尺模型试验,开展了桥面无车状态、桥面有车状态下的两种断面形式以及0°、+3°和-3°三种风攻角共6个试验工况节段模型涡激共振试验研究,并将模型试验结果经过振型修正换算到实桥。
3) section model
节段模型
1.
Algorithm for free vibration identification of bridge deck section model system matrix;
桥梁节段模型系统矩阵自由振动识别的一种算法
2.
The wind tunnel tests for measuring the static wind forces on the bridge girder and the section model wind tunnel dynamic testing for Caiyuanba Yangtze River Bridge in Chongqing are introduced in this paper.
风致振动是大跨度中承式拱桥设计的主要控制因素之一,本文介绍了重庆菜园坝长江大桥风洞主桥节段模型静力三分力试验以及节段模型动态试验的主要内容及相应的结果,介绍了由于双拱干扰下的主拱静力三分力试验和涡振试验及其结论。
3.
The section model wind tunnel tests and test results are described, and the wind-resistant behavior of the bridge is evaluated based on the tests.
对杭州湾大桥北航道斜拉桥成桥状态、施工状态进行了动力特性分析,介绍了节段模型风洞试验的主要内容、试验结果,据此分析评估了该桥的抗风性能。
4) segmental model
节段模型
1.
Wind tunnel test of segmental models of half-through truss arch bridges;
中承式桁架拱桥节段模型风洞试验研究
5) 3D network model of joints
三维节理网络模型
6) 3~dimension segmental instrumentation
三维节段内固定
补充资料:基于UG生成表驱动的零件三维参数化模型的研究
阐述了基于UG生成表驱动标准件模型库的方法和步骤,并以一个实例对如何建立参数化模型、确凿设计变量、给模型分配设计变量以及设置和编辑电子表进行了详细的论述。实践证明,利用此方法可以方便快捷建立零件的三维参数化模型库,实现零件的系列化设计,能大大提高设计效率。 在制造工业中经常遇到形状相似,但大小并不完全相同的零件,比如系列化的产品零件等。对于这些零件的二维设计,目前已经比较成熟。但随着CAD/CAM技术的发展,产品的设计与制造有了新的思路,即从三维到二维的设计步骤,也就是首先要建立三维模型,然后自动生成二维的工程图纸,或者利用三维零件模型直接生成数控代码,实现无图纸加工,节约时间和成本。因此零件三维参数化模型的建立,就显得尤为重要,它将使产品的结构设计的系列化成为可能,并极大地缩短了结构设计周期,减少了由于零件的尺寸变化带给工程师的工作量。 1、 建立表驱动零件模型库的原理
在产品的系列化设计过程中,为了加快产品设计过程,减少重复性的劳动,应建立结构形状相同仅尺寸不同零件的三维模型库,如螺钉、螺栓、螺母、垫圈、密封件、润滑件和轴承等一些标准件。UG虽然提供了许多二次开发工具(如UG/Open GRIP、UG/Open API、UG/Open),但利用二次开发工具需要设计人员技术比较高,一般设计人员很难完成[1],利用UG提供的表驱动技术同样可以创建标准零件、通用零件以及产品系列化设计的三维模型库。 建立三维参数化模型以后,通过设置设计变量和将设计变量分配给模型,然后创建一个含有这些变量的外部电子表,将电子表链接到当前模型中,因为电子表中的变量被当前图形文件的零件尺寸所引用,这个表就可以用来改变当前图形文件中的零件的尺寸,所以用户可通过控制外部电子表对零件进行修改,因此可避免由于设计变化而不得不修改大量模型参数所带来的损失,并且用一个模型就可表达多个同类结构的零件。 2、 建立基于表驱动的零件三维参数化模型 2.1 分析零件特征 为了高效地创建表驱动零件,在设计前必须对该零件进行仔细的分析,首先要从整体上形成关于这个零件建模的大概思路,明确设计零件需要创建哪些特征以及创建这些特征的次序;同时还需要注意所要创建的各种特征的内在联系及其各自的特点,最后明确该零件需要几个参数进行驱动。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条
|