说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 聚点
1)  accumulation point
聚点
1.
It is proved that there are countable infinite discontinuous points in plane bounded closed region D, and these discontinuous points in D only have not many of accumulation points bounded functions which are also integrable functions on D.
对于多元函数可积函数类,进行了拓展性研究,论证了在平面有界闭区域D内有可数无限个不连续点,且这些不连续点在D内只有有限个聚点的有界函数也是D上的可积函数。
2.
Through comparing the different topological structures in real number space the author,finds some relatives among many topological structures in real number space and draws related properties of accumulation point and limit point in different topological structures.
针对实数空间R中不同的拓扑结构,讨论实数空间R若干拓扑结构之间的关系,并讨论在不同的拓扑结构中,聚点、极限点等有关性质。
3.
By changing the perturbution to strongly monotone VIP,basing on the equivalent D-gap function,a derivative-free algorithm is given,and each accumulation point obtained by this algorithm is a solution to the original VIP under suitable conditions.
利用广义的D-间隙函数提出一种无需计算函数梯度的算法,进一步证明此算法产生的每一聚点都是原变分不等式的解。
2)  cluster point
聚点
3)  accumulation [英][ə,kju:mju'leiʃən]  [美][ə,kjumjə'leʃən]
聚点
1.
We investigate the asymptotic spectrum and accumulation of transport operator A in slab geometry with continuous energy, anisotropic scattering and inhomogeneous medium,under generalized boundary conditions.
研究非均匀介质、各向异性和连续能量的板模型迁移算子 A在广义边界条件下的的渐近点谱及其聚点
2.
In Lp(1 ≤p <±∞) space we show the relative compactness of the operator K = A - B , obtain the new results of asymptotic point spectrum and accumulation of operator A .
研究非均匀介质、各向异性和连续能量的有界凸体迁移算子A的渐近点谱及其聚点
4)  point of accumulation
聚点
5)  limit point
聚点
1.
By omitting certain particular conditions inconsistent with actualities, we can also obtain a similar result in the position distribution of discrete eigenvalues and their limit points for this kind of operators.
讨论了各向异性、能量相关、非均匀有界凸体介质中迁移算子的谱,在省略某些不符合实际的 特殊条件的情况下,对这类算子离散本征值及其聚点的位置分布,同样获得了一个类似的结果。
6)  clustering method based on clustering point
聚类点聚类
补充资料:聚点


聚点
accumulation point

  数集的聚点.在离散空间中不存在有聚点的集合.在空间X中集合A的所有聚点的集合称为(A的)导出集(deri似1 set).在T,空间中,集合的聚点的任何邻域都含有集合的无限多个点卜 上述概念和邻近点(proximate point)以及完全聚点(complete accumulatxon point)的概念有区别.特别地,集合的任意点都是集合的邻近点,但未必是聚点(反例:离散空间的任意点)聚点!~ulati.画毗;~一T口..},集合A的 拓扑空间X的点x,使x的任何邻域都含有月中异于x的点,一个集合可能有许多聚点二但也可能一个也没有例如,在通常拓扑下,任何实数都是全体有理
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条