1) subalgebra
['sʌb'ældʒibrə]
子代数
1.
The Largest Subalgebra and Its Generalized Tautology in Interval Valued Fuzzy Propositional Logic;
区间值模糊命题逻辑的最大子代数及其广义重言式
2.
Researches on subalgebras of matrix-valued Lipschitz algebras
关于矩阵值Lipschitz代数的子代数研究
3.
The following concepts are introduced: quotient, subalgebra and homomorphism of completely distributive lattices and meet continuous lattices.
介绍了完全分配格、交连续格的商集、子代数、同态的概念。
2) sub-algebra
子代数
1.
Discuss of numbers of sub-algebra in n-value logic systems
n值逻辑系统子代数个数之讨论
2.
Then we discuss the algebraic structure of convolution algebra in the basis of Chen Jian-nan s paper,and give some properties of the sub-spaces of convolution algebra and the conditions on which the sub-spaces can become the sub-algebras,the sub-coalgebras,ideals and coideals.
卷积代数在Hopf代数中起了很大的作用,该文在岑建南文章的基础上继续讨论卷积代数的Hopf结构,给出了卷积Hopf代数的子空间的性质和卷积Hopf代数的子空间成为子代数、子余代数、理想、余理想的条件,同时还讨论了卷积Hopf代数的模和余模。
3.
Sub-algebra and generating sub-algebra are discussed.
文章引人弱 Fuzzy蕴涵代数的概念 ,研究了它的一些性质 ,讨论了其子代数和生成子代
3) operator algebras
算子代数
1.
And the relation between the S hyperreflexivity and the hyperreflexivity of operator algebras is discussed.
在自反Banach空间上引入S超自反的概念,讨论了S超自反与算子代数超自反的关系,同时讨论了超自反算子代数直和的超自反性。
2.
We prove the following theorem: Suppose that C0(U),C1(U,L,R,D,V),C2a(U),C2b(U,R),C3a(U),C3b(U,R) are, respectively, classes 0,Ⅰ,Ⅱa,Ⅱb,Ⅲa andⅢb of general symmetric operator algebras on spaceⅡk.
本文研究Pontrjagin空间上一般算子代数弱闭和一致闭的等价条件,得到定理:设C0(U),C1(U,L,R,D,V),C2a(U),C2b(U,R),C3a(U),C3b(U,R)分别是Ⅱk空间上第0,Ⅰ,Ⅱa,Ⅱb,Ⅲa和Ⅲb类的算子代数,则(1)C0(U),C2a(U)或C3a(U)为一致闭(弱闭)的等价条件是U是Hibert空间G上的C*-代数(W*-代数;(2)C1(U,L,R,D,V)为一致闭(弱闭)的等价条件是U是Hibert空间H上的C*-代数(W*-代数),并且R是闭子空间,V是闭算子,L对称闭的;(3)C2b(U,R)或C3b(U,R)为一致闭(弱闭)的等价条件是U是Hibert空间H上的C*-代数(W*-代数),并且R是闭子空间。
3.
The concept of generalized T_derivation is introduced and the properties of T_derivations on pure algebra and operator algebras are obtained.
引进T_导子的概念 ,刻划了一般代数和算子代数上的T_导子的特征性质 。
4) derivation algebra
导子代数
1.
Three-dimensional Lie triple systems and their derivation algebras;
三维李三系及其导子代数
2.
The derivation algebras of Lie algebras T(3) over a field F of characterisitic p=3;
特征p=3域上李代数T(3)的导子代数
3.
In this paper,we discuss the derivation algebra Der(g(A))of the contragredient Lie algebra g(A),associated to any complex n×n matrix A.
本文对逆步李代数g(A)的导子代数进行了研究。
5) quantum algebra
量子代数
1.
The bases and maximal vectors in Verma module of quantum algebra for type A_2;
A_2型量子代数Verma模的典范基和极大向量
2.
Two different rotational formulae for description of normal deformed and superdeformed nuclei are submitted by the definition of the softness and by two different representations of quantum algebra.
利用量子代数两种不同的表示和原子核软度系数的定义 ,给出了描述正常形变核和超形变核两个不同的转动谱公式 。
3.
In this paper, it is shown that, for the finitely-dimensional irreducible representations of SLq(3)the representation space labelled by the Elliott-like bases |(λμ)∈J M>is com-posed of many J-subspaces, and every J-subspace is an IR-space of the subalgebraSUq(2)of the quantum algebra SLq(3).
本文表明,用类Elliott基|(λμ)∈JM>标记的SLq(3)有限维不可约表示(λμ)的表示空间,可以分为许多J子空间,而每个J子空间都是量子代数SLq(3)的子代数SUq(2)的空间。
6) C subalgebra
C-子代数
补充资料:Cartan子代数
Cartan子代数
Cartan subalgebra
Cal出口子代数{C田七口叨b目geb.;Kalyr她叫八翻n石碑l,域k上有限维Lie代数g的 g的一个等于它在g内的正规化子的幂零子代数.例如,若g是某一固定阶的全体复方阵所构成的Lie代数,则一切对角方阵所构成的子代数就是g的一个Cartan子代数.Cartan子代数也可以定义为g内一个幂零子代数t,它等于它的Fitting零分支(Fittingnull一compenent)(见Lie代数表示的权(weight ofarePresentation of a Lie al罗bra)) 助={X。。:vH:t〕nx.,。z((adH)月‘H(幻=0)},这里ad代表g的伴随表示(见lie代数(Lieal罗-bra)). 进一步假设k的特征是零.这时,对于任意正则元x钊,g中一切被adX的幂所零化的元素的集合n(X,g)是g的一个Cartan子代数,并且g的每个Cartan子代数都具有tt(X,g)的形状,X是某一个适当的正则元.每个正则元属于且只属于一个Cartan子代数.。的所有Cartan子代数的维数相同,等于g的誉(rank).Cartan子代数在Lie代数的满同态之下的象仍是Cartan子代数.如果k是代数闭的,则g的一切Cartan子代数都是共扼的;更确切地说,它们可以被g的自同构代数群D中的算子将一个变到另一个,这里D的Lie代数是adg的换位子代数.如果q是可解的,那么不假设k是代数闭的,上述断言仍然成立. 设G或是特征为零的代数闭域k上的一个连通线性代数群,或是一个连通Lie群,而g是它的Lie代数.那么g的一个子代数t是一个Cartan子代数,当且仅当它是G的一个ca比坦子群(CartaJ飞subgrouP)的Lie代数 令g是k土1个有限维向量空间V的全体自同态所构成的Lie代数叭伊)的一个子代数,J是叮印)中包含g的最小的代数的Ue代数(Lie al罗bra,al罗braie).如果下是可的一个Cartan子代数,则下门@是g的一个Cartan子代数,井且如果t是g的一个Cartan子代数汀是91(V)中包含t的最小的代数子代数,则下是可的一个Cartan子代数且t二『自务. 令人CK是一个域扩张g的一个子代数t是Cartan子代数,当且仅当t⑧*K是g⑧*K的Cartan子代数 当q是一个半单Lie代数(这是E.Cartan所使用的名称)时,Cartan子代数起着非常重要的作用.在这种情形下,g的每个Cartan子代数t都是交换的并且由半单元素组成(见J.闭aII分解(Jordande~户万1-tion)),且价Inog型(萄lling form、在t上的限制是非奇异的‘【补注】g的一个兀素h叫做正则的(re酗盯),如果g的自同态adh的Fitting零分支的维数最小.在以元素是正则的条件定义一个Zarlski开子集的意义下,g中儿乎所有的”元素是正则的.对于正则元h来说,adh的P’i往Ing零分支是Cartan子代数这一结果对于任意无限域上的有限维Lle代数都成立({A4],p.59).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条