1) sand case dam with clay core
粘土心墙砂壳坝
1.
Analyses of the monitored seepage data of the sand case dam with clay core of Jilihe Reservoir show that the impervious effect of the clay core is good, that the blanket in the front of the dam has little impervious effect, and that seepage failure will probably take place because of the weak cutoff groove and the large seepage gradient.
对吉利河水库粘土心墙砂壳坝的渗流观测资料分析表明,该坝粘土心墙的防渗效果较好,但坝前铺盖没起到防渗作用,且截渗槽较薄弱,渗透比降较大,可能发生渗透破坏。
2) core wall type sanded shell dam
心墙砂壳坝
1.
Shandong Province is located in the seismic belt with numerous reservoirs, most of whichare core wall type sanded shell dams.
山东省属多地震区,水库众多,且多为心墙砂壳坝。
3) clay?core dam
粘土心墙砂砾石坝
1.
Based on the safety monitoring data obtained from "635" clay?core dam, its engineering behaviors, especially the working behavior at the place where the anti?seepage core in the steep left abutment joints to bank slope concrete, are analyzed.
基于"635"粘土心墙砂砾石坝的安全监测资料,对该坝的工程性状,特别是陡峭左坝肩防渗心墙与岸坡混凝土接触面处的工作性状进行了分析,分析结果认为:对于高压缩性粘土,如何确定开挖边坡以防止因防渗体不均匀沉降而致使其产生裂缝应作专门研究,不宜简单参照规范执行;进行大坝安全监测设计时,应加强对防渗心墙薄弱部位的渗流观测;在设计方案比较阶段,对施工期和蓄水期应该选用非饱和和饱和两套土性指标进行计算分析,否则将会低估蓄水期坝体的变形。
4) clay-core gravel sand dam
砂砾石粘土心墙坝
1.
Analysis on wetting deformation of upstream dam shell in 635 clay-core gravel sand dam;
“635”砂砾石粘土心墙坝蓄水初期上游坝壳浸水变形分析
5) Clay core dam
粘土心墙坝
1.
Through the splitting grouting technology mechanism analysis,according to the characteristics of dam types,this paper analyzed the application and grouting effect under the condition of high water level in the clay core dam,homogeneous weathering dam,sandstone dam and sand powders dam especially according to the construction methods,grouting technics,grouting parameters,etc.
文章通过对劈裂式灌浆机理的分析,针对各类坝型的特点,从施工方法、灌浆工艺、灌浆参数等方面分别分析了劈裂式灌浆技术在粘土心墙坝、均质风化料坝、砂土坝、石碴坝等坝型中的应用及高水位条件下的灌浆效果,得出结论:劈裂式灌浆技术通过改良施工工艺和浆液比重,可加快施工进度,提高浆脉厚度至20~30cm,具有较高的应用价值。
2.
Taking a certain clay core dam as an object of calculation and the Duncan - Chang double curve non-linear model as the embankment filling both displacement and stress values of the dam have been calculated by applying load in 8 stages.
以某粘土心墙坝作为计算对象,坝体填料采用邓肯—张双曲线非线性模型,利用中点增量法计算了坝体在八级加载情况下的变位和应力值。
6) earth-rock dam with clay core
粘土心墙土石坝
1.
Analysis of seepage stability of earth-rock dam with clay core under ascending and descending water table conditions;
水位升降对粘土心墙土石坝渗流稳定性分析
2.
2-D FEM analysis of the post-earthquake failure mechanism for the earth-rock dam with clay core;
粘土心墙土石坝震后破坏机理的二维有限元分析
补充资料:粘土心墙坝
粘土心墙坝
earth dam with clay core
填筑质量不良将使沉陷量过大。建坝初期易使心墙由于不均匀沉陷而出现纵向裂缝;后期由一于心墙固结缓慢,沉陷量常大于同期坝壳沉陷量,此时,将发生拱效应,使心墙出现隐蔽的水平张拉裂缝而造成渗水通道,甚至引起心墙破坏 粘土心墙坝的渗透及稳定计算见土坝渗流及坝坡稳定。(陈吉社)n iantu xinq一angba粘土心墙坝(earth dam with elay eore)用填筑于坝体中心的渗透系数较低的粘性土体作为防渗设备的上石坝。此类坝由心墙或斜心墙防渗;上下游坝壳支撑心墙保持坝体稳定:下游坝趾设排水以排除坝体、坝基渗水,并11r保护下游坝脚不受冲刷(见图)。当坝址附近有大量透水砂砾料和较少的粘性粘上心墙;止渡)公不透水层枯土,心墙坦土料,地基的预估沉陷量偏大时,采用这种坝型是适宜的。与均质土坝相比,其下游浸润线较低,边坡可陡些,而上游边坡陡于斜墙坝,故工程量常较均质土坝、粘土斜墙坝少,为此,高土石坝多趋向于采用心墙坝。中国碧口水电站及陕西石头河水库大坝,坝高超过100米,都采用心墙坝。 粘土心墙叮垂直或略向上游倾斜布置,其顶部高程不低于最高库水位,顶宽考虑施工要求不小于2米,自墙顶向下游逐渐加厚,薄心墙边坡可陡于1;0.2,厚心墙边坡可达l;1,甚至更缓。心墙厚度不得小于承受水头与心墙土料允许渗透坡降的比值。心墙与坝壳间一般设置反滤过渡层,心墙底部用截水槽与坝菇不透水层相连接。当不透水层为基岩时,为防止集中渗流对心墙底部粘土的冲刷,常设混凝土垫或混凝土齿墙。心墙与岸坡的连接处可扩大断面以延长渗径,防止接触冲刷。 心墙土料可就地取材,以残积土、冰啧土、沉积土为好,风成土及湖积土较差。其物理指标以粘土含量3()一5。%、渗透系数1又10一6一1丫1()一”厘米/秒、含水量15一25%为宜坝壳llf用一种或多种透水料如砂、砾(卵)石、风化石碴等填筑。坝壳料的渗透系数应比心墙料大1()。倍以上,以加强防渗效果;应具有较高的抗剪强度,以利于稳定;颗粒级配应连续,以利于压实「此外,对影响抗剪强度和渗透稳定性的细粒含量应限制在规定范围之内。心墙粘土宜用羊足碾或气胎碾压实:砂石料及块石、石碴分别用振动碾压实。若
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条