1)  cartesian coordinates
直角坐标网格
1.
Body fitted method with cartesian coordinates for solving viscous fluid flow and heat transfer problems;
粘性流体换热问题用直角坐标网格的贴体解法
2)  unstructured Cartesian grid
非结构化直角坐标网格
3)  right angle
直角
1.
Analyzing on being right angle of space plane angles projection;
投影成直角的空间平面角再分析
2.
The metal of the right angle isnt enough used of hot rolled equal and unequal angle steel Mean while,the right angle is easy producing stress concentration and difficult rolling Therefore,the section of angle steel was optimized,and a new section of round arc angle steel is put forward,which can be easily rolled,used and saved metal material over 5
热轧等边、不等边角钢直角处金属未被充分利用 ,易产生应力集中 ,且轧制难度大 ,因而对其断面进行了优化设计 ,提出一种新型圆弧角钢 ,其轧制容易 ,使用方便 ,可节约金属材料 5 %以
4)  rectangular coordinates
直角坐标
1.
Research on the Mathematical Models of Form and Position Errors for Rotary Surface in Rectangular Coordinates;
直角坐标系下回转表面形位误差数学模型的研究
2.
By introduction of the finite difference method into the Symplectic system of mechanics of elasticity, a Symplectic difference format for plane rectangular coordinates was developed for elasticity problems under stress boundary condition.
将全区域离散的有限差分法引入弹性力学辛体系,建立了应力边界问题的平面直角坐标辛差分格式,用对偶的二类变量进行求解,可直接求得位移和应力。
3.
This paper proposed an assumption on the basis of the operating characteristic of power systems,then made an improvement on Newton-Raphson power flow algorithm in rectangular coordinates.
根据电力系统的运行特点提出假设,继而时直角坐标牛顿-拉夫逊法潮流计算进行改进这种改进方法不但使雅可比矩阵元素的计算量大大减少,而且可提高计算速度、降低对计算机贮存容量的要求为直角坐标牛顿-拉夫逊法潮流计算的使用研究提供了新的依据
5)  right angle consolidation
直角凝固
6)  orthogonal cutting
直角切削
1.
A 2-dimensional elasto-plastic finite element model of metal orthogonal cutting was developed based on large deformation-large strain theory,incremental theory and updating Lagrang- ian formulation.
基于大变形一大应变理论、增量理论以及更新拉格朗日算法,建立二维弹塑性金属直角切削有限元模型;采用几何分离准则(距离准则)判断材料的分离,并自动对畸变网格进行重划分;通过用不同的刀具前角对金属直角切削过程进行数值模拟,分析总结结果,得出直角切削过程中在不同切削前角时切削力、刀具与工件的温度、应力应变的分布情况,为选用刀具形状、提高切削表面质量提供了理论依据。
参考词条
补充资料:高斯-克吕格尔平面直角坐标系
      根据高斯-克吕格尔投影所建立的平面坐标系,或简称高斯平面坐标系。它是大地测量、城市测量、普通测量、各种工程测量和地图制图中广泛采用的一种平面坐标系。
  
  高斯-克吕格尔投影  它的理论是德国的 C.F.高斯于1822年提出的,后经德国的克吕格尔(J.H.L.Krüger)于1912年加以扩充而完善。
  
  用大地经度和纬度表示的大地坐标是一种椭球面上的坐标,不能直接应用于测图。因此,需要将它们按一定的数学规律转换为平面直角坐标。大地坐标(B,L)转换为平面直角坐标(X,Y)的一般数学表示法为:
  
  
X=F1(B,L),

  
  
Y=F2(B,L),

  式中F1、F2为投影函数。高斯-克吕格尔投影的投影函数是根据以下两个条件确定的:第一,投影是正形的,即椭球面上无穷小的图形和它在平面上的表象相似,故又称保角投影或保形投影;投影面上任一点的长度比(该点在椭球面上的微分距离与其在平面上相应的微分距离?龋┩轿晃薰亍5诙智蛎嫔夏骋蛔游缦咴谕队捌矫嫔系谋硐笫且恢毕撸页ざ缺3植槐洌闯ざ缺鹊扔?1。该子午线称为中央子午线,或称轴子午线。这两个条件体现了高斯-克吕格尔投影的特性。
   高斯-克吕格尔投影属于横轴切圆柱正形投影。可以设想将截面为椭圆的一个圆柱体面套在地球椭球的外面(图1),圆柱的中心轴EE1在赤道面内,圆柱面同椭球面相切在中央子午线上。按正形条件将中央子午线东、西各一定经度范围内的地区(图1中画有晕线的地区)投影到圆柱面上,然后将该圆柱面展开成一平面,就得出中央子午线两侧的一部分地区在平面上的投影(图2)。地球椭球赤道的投影也是直线,且与中央子午线正交,以前者为横轴,即у 轴,东向为正;后者为纵轴,即x轴,北向为正;两者的交点O为原点,这就形成了高斯平面直角坐标系。
  
  高斯-克吕格尔投影是将一个不可平展的地球椭球面变换成平面。这种变换不可避免地会产生投影变形,其中长度变形随着离中央子午线的距离平方而增大。投影变形过大,对应用和计算都会带来许多不便。为了限制这种投影变形,克吕格尔提出将地球椭球面按子午线划分成适当个数的投影带,带宽一般分为6°、3°和1.5°等3种。每一投影带采用各自独立的高斯平面坐标系(图3),并规定у坐标加上500公里,以避免出现负值。为了表示任一点所在的投影带,又规定у坐标值前加上二位数,以表示投影带号。x 坐标值无论在哪一投影带内都是由赤道起算的实际值。
  
  中国于50年代正式决定在大地测量和国家地形图中采用高斯-克吕格尔平面直角坐标系。
  
  中国除了天文大地网平差采用椭球面上的大地坐标之外,高斯平面直角坐标系被广泛应用于其他各等大地控制网的平差和计算中。为此,一般先将椭球面上的方向、角度、长度等观测元素经方向改化和距离改化,归化为相应的平面观测值,然后在平面上进行平差和计算,这要比直接在地球椭球面上进行简单得多。
  
  大地坐标、大地线长度和大地方位角与高斯平面上相应的直角坐标,平面边长和坐标方位角之间的相互换算工作,一般是借助于专门的计算用表进行,或者直接在电子计算机上进行。
  
  通用横轴墨卡托投影  高斯-克吕格尔投影的一种变体,简称UTM投影。它同高斯-克吕格尔投影的差别仅在于中央子午线的长度比不是1,而是0.9996。UTM投影带中的两条标准线在中央子午线东、西各约 180公里处,这两条标准线上没有任何变形,离开这两条线愈远变形愈大。在这两条线之内长度缩小,两线之外长度放大。UTM投影应用比较广泛,目前世界上已有100多个国家和地区采用这种投影作为南纬80°至北纬84°的地区中测制地形图的数学基础。
  
  

参考书目
   方俊:《地图投影学》,第二册,科学出版社,北京,1958。
   B.G.Bomford, Geodesy,3rd ed.,Oxford Univ.Press,Oxford,1971.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。