说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 电场能量
1)  electric field energy
电场能量
1.
Associating problems encountered in teaching of an introduction to electromagnetic fields, two viewpoints concerning spherical mirror method and calculation of electric field energy are pointed out.
结合“电磁场导论”课程教学中遇到的问题,指出有关球面镜像、电场能量计算的两点看法。
2)  field energy
电场能量
1.
The capacitance and electric field intensity of nonparallel plate capacitor are calculated according to the formula of electric field energy and capacitor.
利用电场能量和电容器的能量公式,解出非平行板电容器的电容和电场分布。
3)  electrostatic field energy
静电场能量
1.
A general formula of the total electrostatic field energy is derived from the thermodynamic expression and electrodynamics knowledge.
由电动力学知识,运用热力学关系式导出了总静电场能量的一个普遍公式,并由此得出真空中的总静电场能公式及无损耗电介质中的总电场能公式。
2.
we calculate the electrostatic energy of conductor in the state of electrostatic balance,and analyze the way of calculating,discuss the difference between and the meaning of electrostatic energy and electrostatic field energy.
计算了静电平衡状态下导体的静电能量;分析了计算的方法;讨论了静电能量与静电场能量的意义与区别。
4)  electromagnetic field energy
电磁场能量
1.
Study on the conservation of electromagnetic field energy and angular momentum when neutral conductor spins in the even magnetic field;
中性导体在磁场中旋转时电磁场能量及角动量守恒研究
5)  electric field energy method
电场能量法
6)  measurement of electrostatic field's energy
静电场能量测量
补充资料:能量原理与能量法


能量原理与能量法
energy principles and energy methods

  nengliang yuanli yu nengliangfa能量原理与能量法(energy prineiple、and energy methods)根据能量来分析结构在外来作用下的反应的力学原理和方法。能量原理是力学中的机械能守恒定律或虚功原理在变形固体力学中的具体体现,它是能量法的理论基础,也是用能量法解题时必须满足的条件。这些条件是与平衡条件或位移协调条件等价的。能量原理和能量法与先进的计算技术相结合,显示出优越性。 应变能、余能和势能在单向应力状态下,弹性体的应变能密度(单位体积的应变能)怂可用一下式计算: ,‘一站O。凌它相当于图l中用阴影线表示的面积。另外,在单向应力状态下的余能(应力能)密度万可用下式计算: 万一俨:而它相当于图2中阴影部分的面积。由图1.21;r知 2,+万=JO‘’)。‘。~J茸祥一言一一£ d£ 图J应变能密度图2余能密度图3线弹性情尤下的应变能密度与余能密度由图3可知,线弹性体的余能密度与应变能密度在数值上相等。在简单应力状态下的应变能密度或余能密度经过总加后,可得到复杂应力状态下的应变能密度或余能密度。把它们在整个弹性体的体积内积分就得出整个弹性体的应变能或余能。对于线弹性体,应变能或余能可表示为位移或应力(内力)的二次式。弹性体的应变能与外力势能的总和称为总势能。外力势能在数值上等于各个外力在施力点位移上所做功的总和冠以负号。 能量原理在给定的外力作用下,在满足位移边界条件的所有各组位移中.实际存在的一组位移应使总势能为极值。对于稳定平衡状态,这个极值是极小值。因此,上述能量原理称为极小势能原理。它等价于平衡条件(含应力边界条件)。在满足平衡条件(含应力边界条件)的所有各组应力(内力)中,实际存在的一组应力‘内力)应使弹性体的余能为极值。对于稳定平衡状态,这个极值是极小值。因此,这个能量原理称为极小余能原理。它等价于位移协调条件。 上述两个能量原理实际上就是数学中求泛函极值的变分原理,应变能和余能分别是以位移或应力(内力夕为自变函数的泛函。所以能量原理也称变分原理,是工程力学的电要组成部分。在变分原理中,位移的变分就是虚位移,应力(内力)的变分就是虚应力(虚力)。因此,能量原理中的极小势能原理又相当于虚位移原理,极小余能原理又相当于虚应力(虚力)原理。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条