1) high degree complex polynomials
高次复多项式
1.
In this paper the theory of Mandelbrot-Julia sets of high degree complex polynomials is introduced, a series of the Mandelbrot-Julia sets of high degree complex polynomials is constructed through escape-time technique.
阐述了高次复多项式的 Mandelbrot-Julia 集(简称 M-J 集)理论,给出了高次复多项式 M-J 集的定义,并利用逃逸时间算法构造出一系列高次复多项式的 M-J 集。
2) High Degree Complex Polynomials Mapping
高次复多项式映射
3) high order polynomial
高次多项式
1.
Research of overhead cam characteristic based high order polynomial in high speed-gasoline engine;
基于高次多项式的高速汽油机顶置凸轮特性
2.
To adapt to the high speed of modern rapier looms and the requirement of rapier motion curve,a new design method of transitional curve of modified trapezoid acceleration motion for rapier is put forward,which uses high order polynomial as transitional curve.
为适应现代剑杆织机的高速运转及对剑杆运动曲线的高要求,针对修正梯形加速度剑杆运动规律的过渡曲线提出一种新型的设计方法,即采用高次多项式作为其过渡曲线。
4) high-order polynomial
高次多项式
1.
By simulating,computing and analyzing FB2,sine-parabolic and high-order polynomial the cam profile of asymmetrical valve train,the influences of characteristic parameters such as velocity at the end of buffering zone,lift at the end of buffering zone,half-angle of base zone on the cam profile,and the valve movement as well as the self characteristic response of every cam profile were analyzed.
通过对复合二摆、正弦-抛物线、高次多项式3种非对称配气凸轮型线的仿真计算和分析,总结出了缓冲段终点速度、缓冲段终点升程、基本段半包角等特性参数的变化对几种凸轮型线和气门运动规律影响的共性和各型线自身的特征响应,为配气凸轮型线设计方案的选择和目标性设计调整提供了参考依据。
2.
Taking the fullness coefficient and wear design as multi-objectives,we study the optimization of the cam profile of a high-order polynomial using MATLAB and its optimization toolbox.
动力凸轮型线的设计十分重要,以高次多项式凸轮型线为例,在基于丰满系数和磨损设计多目标函数情况下,利用MATLAB及其优化工具箱(optimization toolbox)对目标函数数学模型进行优化求解。
5) higher polynomial system
高次多项式系统
1.
Qualitative analysis for a class of higher polynomial system;
一类高次多项式系统的定性分析
2.
Study on limit cycles for a class of higher polynomial system;
一类高次多项式系统极限环的研究
3.
By transformation, we change a class of higher polynomial system into a Lienard s system.
通过变换将一类高次多项式系统化为Lienard系统,利用Hopf分枝定理和张芷芬唯一性定理,证明了该类系统极限环的存在性与唯一性。
6) Polynomial Profile
高次多项式型线
补充资料:多项式乘多项式法则
Image:1173836820929048.jpg
先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。