说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 一致持续
1)  uniform persistence
一致持续
2)  Uniform persistence
一致持续性
3)  uniformly strong persistence
一致强持续
4)  uniformly persistent
一致持续生存
1.
It is discovered that the inter-infection is crucial to the dynamical behavior of the system, namely, when the disease will die out without the inter-infection for both species, the disease may prevail in both species if the inter-infection is introduced; Moreover, the system is uniformly persistent.
研究了一类两种群相互竞争的SIRS传染病模型,揭示了两种群共存时,交叉传染对疾病传播的本质影响,即在无交叉传染疾病绝灭的情况下(一定条件时),若引入交叉传染,在相同的条件下,系统为一致持续生存的,从而疾病就会流行起来。
2.
We show a sufficient condition of the zero solution of (1)is uniformly asymptotically stable and every non-negative solution of (1) tends to zero as n→∞ , while we also show another sufficient and necessary condition about (1) is uniformly persistent.
讨论了时滞差分方程xn+ 1 - xn = - δxn + pxn- kf( xn- k) , n = 0 ,1 ,2 ,… (1)得到了该方程零解的一致渐进稳定的充分条件,且每一个非负解都趋近于零,并且获得了该系统一致持续生存的充要条件。
5)  uniform persistence
一致持续生存
1.
It is shown that model is uniform persistence under some appropriate conditions and sufficient conditions are established the existence of a positive periodic solution which is globally asymptotically stable by differential inequality and lyapunov functional.
研究具有离散时滞的非自治的N种群竞争扩散模型,通过构造李亚普诺夫泛函,微分不等式获得了其一致持续生存及正周期解存在且全局渐近稳定的充分条件。
2.
The model is discreted via pioncare map and sufficient conditions for uniform persistence of the model are obtained by the theory of infinite dimensional discrete semi dynamical systems.
该文研究了一类Chemostat模型的一致持续生存 ,该模型引入了周期环境和营养从吸收到转化为生物量的这种时滞。
3.
Based on the technique of Razumikhin,the sufficient conditions for uniform persistence are obtained.
以Razumikhin方法为基础,得到了系统一致持续生存的充分条件。
6)  uniform week persistence
一致弱持续性
1.
In this paper,for a kind of age-structured epidemic models,it is proved that the disease is extinct when the basic reproductive rate R_0<1,and the epidemic model possesses both the strong persistence and the uniform week persistence when R_0>1.
研究了一类具有年龄结构的SIR型传染病模型,证明了该模型当阈值R_0<1时疾病消亡,当阈值R_0>1时模型同时具有一致弱持续性质和强持续性质。
补充资料:Weierstrass准则(关于一致收敛的)


Weierstrass准则(关于一致收敛的)
erion (for unifonn convergence) Weierstrass cri-

weierstrass准则(关于一致收敛的)[Weierstrass eri-teri佣(for.丽肠价ne哪ergence);Be益eP扭TPaeea nP。-3“aIC(pa“IloMepHO盛cxo八IIMOCTH)] 这是将函数级数(series)或序列与适当的数值级数和序列对照所给出的关于一致收敛(训如rm conver-genee)充分条件的一个定理;它是K .Weierstrass建立的(〔11).若对定义在某集合E上的实值或复值函数的级数 艺u*(x), n盈I存在非负数的收敛级数 艺a。,使得 }“。(x){(a。,n=l,2,·…则原来级数在集合E中一致收敛且绝对收敛(见绝对收敛级数(absolutelyc~r罗nt series).例如,级数 军,S】n月X 月百j刀-在整个实数轴上一致且绝对收敛,因为 }sin nx}_1 }竺兰兰二二二}或一二一. }n一!”-而级数 瘩:告收敛. 若集合E上的实值或复值函数序列人(n二l,2,…)收敛于函数f,且存在数列戊。(:,>0),当”~的时:。~0,使得If(x)一f。(x)}簇戊。(x〔E,n二1,2,一),则序列在E上一致收敛.例如序列 f(二卜l一上卫兰 X‘+n在整个实数轴上一致收敛于函数f(x)=1,因为 ,,一f。(x)、<告且浊寺一。.关于一致收敛的Weierstrass准则也可以应用于在赋范线性空间中取值的函数.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条