1) multi-parameter asymptotic error expansion
多参数渐近误差展开
1.
A multi-parameter asymptotic error expansion and extrapolation of the Hood-Taylor elements for the Stokes problem is considered on the piecewise uniform rectangular meshes.
考虑拟一致矩形网格上Stokes方程组Hood-Taylor元的多参数渐近误差展开和分裂外推。
2) Multi-parameter Asymptotic Expansion
多参数渐近展开
3) asymptotic expansion of two parameters
两参数渐近展开
4) asymptotic error expansion
渐进误差展开式
5) asymptotic error constant
渐近误差常数
1.
Through choosing the optimal weighted factor to make the scheme with smaller asymptotic error constant and at least having the convergent order of the former iterative schemes.
通过选取最优加权因子使得该迭代格式具有较小的渐近误差常数,且至少具有原有迭代格式的收敛阶,数值例子表明该方法具有较快的收敛速度。
2.
Through Choosing the optimal weighted factor to make the scheme with higher-order convergence and smaller asymptotic error constant.
提出了加速牛顿迭代收敛的新思想,构造出一类加权牛顿迭代格式,通过选取最优加权因子,使得该格 式具有高阶收敛性和较小的渐近误差常数。
6) Asymptotic error relation
渐近误差系数
补充资料:渐近展开
渐近展开
asymptotic expansion
渐近展开【as州p咖ce习娜nsi.;~价..幻以犯脚冬~e皿e1,函数f(x)的 一个级数: 艺么(x) 月二0对于任何整数N)0,都有 刀 f(x)=艺么(x)+o(卿(x))(x*x。),(l) ”=0其中{叭(x)}是某一给定的(当x~x。时的)渐近序列(asymPtotic seq~ce).在这种情况下,还可表示为 f(x)~叉华。(x),f叭(x)},(x*x。).(” n二0如果由上下文显然可知{叭(x)}指的是什么序列,则在式(2)中可以省去这个序列. 渐近展开(2)称为E咖lyi意义下的渐近展开(as ym-ptotie ex稗nsion in the sense of Erd‘l功)([3]).形女口 f(x)一艺an叭(x)(x*x。)(3) 月二0的展开(其中a。都是常数),称为几inca记拿冬丁的渐近展开(asyn叩幻tic exPansion in the sense of Poi仆ca始).当给定渐近函数序列{叭(x》时,则与渐近展开(2)不同,渐近展开(3)可由函数f(x)本身唯一确定.如果对于有限个值N=O,…,N0<的,式(l)都成立,则这个展开称为精确到。伸屿(x》的渐近展开·级数 艺么(x),艺a。气(x) 月=on二0称为渐近级数(asymPtotic series).这样的级数通常是发散的,其中最常应用的是渐近幕级数(asymPtoticpo从吧r series);对应的渐近展开是Poinca比意义下的渐近展开. 下面是Erd‘lyi意义下的渐近展开的一个例子:_厂了一’{{二,二{石““’一V认{“05汗万一刘户仁一‘”“2一‘一‘ 」二。二}石、.} 一sln‘万一蕊一}户{’“2·’一‘一‘{(*,+£)、其‘,j是Besse!函数,l6J r(歹、n十l一厂2) ‘月’l气F一刀,I,‘, 函数的渐近昵环和渐近级数的概念,是H.Poln-以re(!ID在研究大体力学问题时引人的.渐近展汗的些特例旱在18担一纪时就已被发现和使用(「2j).渐近展汗在许多数学、力学和物理学问题中起着重要作用这是因为许多问题不能精确求解,但是它们的解可以作为渐近近似而得到此外,在渐近展开比较容易求得时,往往可以不必采川数值方法.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条