1) eye-in-hand vision system
手眼视觉系统
1.
<Abstrcat>The eye-in-hand vision system is an important type of robotic vision system.
手眼视觉系统是一类重要的机器人视觉系统,具体介绍了一个用于机器人手眼视觉系统中的手眼镜的光学设计。
2) eye-in-hand coordinated visual servo control system
手眼协调视觉系统
3) eye-in-hand vision
手-眼视觉
1.
Research of dynamic object positioning method of eye-in-hand vision;
手-眼视觉动态目标定位方法研究
2.
A step dynamic object positioning method of robot eye-in-hand vision was proposed.
提出了一种机器人手-眼视觉分步动态目标定位方法。
4) hand-eye vision
手眼视觉
1.
Primary design of hand-eye vision simulation system of space robots;
航天机器人手眼视觉模拟系统初步设计
2.
A semi-physical simulation system was constructed based on PCs, and the application software was developed using 3D graphic library OpenGL to simulate the free-flying work state of the robot and evaluate the efficiency of the actual hand-eye vision servo control algorithm of robot.
为了模拟机器人在自由运动的工作状态,验证实际物理手眼视觉伺服控制算法的效果,在4台PC机的基础上,用三维图形库OpenGL开发了仿真应用软件,组建了机器人视觉伺服控制半物理仿真系统。
3.
The hand-eye vision is used to provide the image information of object and measure the position and orientation of object, which is very important for the space robot to capture the objects.
手眼视觉用于提供目标物体的图像信息和测量物体的位置和姿态,对于空间机器人捕获物体非常重要。
5) human visual system
人眼视觉系统
1.
Halftoning Algorithm for Color Images Based on Human Visual System s Model;
基于人眼视觉系统模型的彩色半调算法
2.
For each of the information,a model is established and also a function is found out to simulate its work on the human visual system.
首先在主观评价过程中提取感知亮度、频率以及边缘3种重要信息;然后构造人眼视觉系统对3种信息的响应函数,并通过线性回归分析将函数拟合成为所需的图像感知质量评价模型;最后,分析了模型的预测值与主观质量评价方法给出的质量分数之间的Pearson相关系数和Spearman等级相关系数,分别为0。
3.
Model-based halftoning techniques exploit the properties of the display device and the human visual system to maximize the quality of the displayed images.
基于模型的半色调技术是根据显示设备和人眼视觉系统的特性从而使图像质量达到最优,其中基于最小平方差模型的半色调技术是其中一种比较好的方法,而基于最小平方差模型的改进半色调技术则是在前者的基础上进行了改进,提出了一种新的迭代方法即取反/交换法。
6) HVS
人眼视觉系统
1.
Error Distribution Feedback Quantization Scheme Based on HVS
基于人眼视觉系统的误差分布反馈量化策略
2.
Most of existing fast fractal encoding algorithms don t take the HVS (Human Visual System) into consideration.
现有的快速分形编码算法多数是在没有考虑人眼视觉系统(HVS)的前提下实现的,针对这个问题,利用HVS的特性,提出了一种基于新型四叉树的快速分形图像压缩算法。
3.
Using the properties of human visual system (HVS), the combination of subjective and objective measurement methods is the most effective way to assess image quality, and also the trend of this research field.
结合人眼视觉系统(HVS)特性,将传统的图像质量主观评价方法与客观评价方法有机地结合起来是图像质量计测研究领域的发展方向。
补充资料:明视觉和暗视觉
不同波长的光刺激在两种亮度范围内作用于视觉器官而产生的视觉现象。光刺激的亮度在约3个坎德拉(cd)以上时,主要由人眼锥体细胞获得的视觉称明视觉或锥体细胞视觉;光刺激的亮度约在10-3尼特以下,即在暗适应情况下主要由杆体细胞获得的视觉称暗视觉或杆体细胞视觉。人眼视网膜中央凹内锥体细胞最多,视网膜边缘只有少数锥体细胞掺杂在杆体细胞中。杆体细胞主要分布在视网膜的边缘,中央凹内没有杆体细胞,而偏离中央凹20°时,单位面积上的杆体细胞密度最大。明视觉主要是中央视觉,而暗视觉则是边缘视觉。因此在微光条件下,如想发现发光暗淡的星星,把目标保持在视觉注视中心反而不如以边缘视觉观察时清楚。
在明视觉的情况下,人眼能分辨物体的细节,也能分辨颜色,但对不同波长可见光的感受性不同,因此能量相同的不同色光表现出不同的明亮程度。一般说来黄绿色看着最亮,光谱两端的红色和紫色则暗得多。不同波长的光的这种相对发光效率通常称作光谱相对视亮度函数(简称V(λ)函数)或相对发光效率函数、视见函数等,可用光谱相对视亮度曲线表示(见图 )。V(λ)函数是人们看不同色光时产生同等亮度感觉所需要的能量的倒数,即V(λ)=1/E(λ)。式中:V(λ)为相应波长λ的光谱视亮度函数值;E(λ)为波长λ的单色光能量。目前通用的V(λ)函数主要是K.S.吉布森和E.P.T.廷德尔用步进法与W.科布伦茨和W.B.埃默森用闪烁法测定结果的平均值。1924年为国际照明委员会(简称CIE)所采纳。其峰值在555纳米处。
CIE V(λ) 函数是根据白种人眼的测定材料确定的。后来有好几位学者对不同人种(埃及人、高加索人、中非人等)的V(λ)函数进行过测定。结果表明,非白种人的视亮度函数在短波段比CIE V(λ)低些。中国心理学家和生理学家近年来用闪烁法对V(λ)函数进行了测定,结果表明:①中国人眼的V(λ)函数与CIE V(λ)函数很一致。目前尚无充分证据证明人种学上的差别影响V(λ)函数;②随着年龄的增长,光谱短波一侧的V(λ)函数有降低的趋势,这主要是由于水晶体发黄所致。
近60年来不断有人对CIE V(λ)函数提出异议,比较集中的意见是短波段偏低。1951年D.B.贾德提出对CIE V(λ)函数在短波段的修正值。随着气体放电光源和单色光源的发展,CIE V(λ)函数越来越不能满足需要。中国计量科学研究院和中国科学院心理研究所协作,用异色明度匹配法研究V(λ)函数。实验数据已被国际照明委员会采纳,列入1988年CIE第75号出版物推荐的V(λ)2°视场(简称Vb12(λ))和V(λ)10°视场(简称Vb110(λ))的国际平均值中。
除年龄外,实验条件和采用的研究方法均影响V(λ)函数,如在明视觉条件下,观察大面积表面时,由于黄斑色素的影响不同和杆体细胞参加,V(λ)曲线比2°视野的V(λ)曲线略有变动。
就正常人眼来说,杆体细胞本身并不能产生彩色视觉,它们只产生无彩色的白、灰和黑的视觉,反以在微光条件下,一切物体呈中性色。暗视觉的光谱相对视亮度函数(简称V′(λ)函数)曲线较V(λ)曲线向短波方面偏移如上图。这说明对长波的感受性降低,而对短波的感受性提高了。这种现象称为普尔金耶现象。
CIE V′(λ)函数是1951年 CIE根据B.H.克劳福德用直接比较法和G.沃尔德用阈限法所得结果推荐使用的。其峰值在507纳米处。这条曲线代表30岁以下经过完全暗适应的观察者,在刺激物离开中央凹超过5°时杆体细胞的平均光谱感受性。V′(λ)曲线的形状主要决定于杆体细胞的感光化学物质对不同波长的吸收特性。视紫红质的吸收曲线与V′(λ)曲线很相似。近年来中国心理学家用直接比较法测定了中国人的V′(λ)结果表明:①V′(λ)曲线形状与CIE V′(λ)曲线形状比较接近,峰值稍向长波位移;②年龄对函数也有影响。
人眼对于亮度约为 10-3~3尼特的光刺激的感觉叫做间视觉。在间视觉中杆体细胞和锥体细胞同时活动并相互作用,它们的相应关系不断变化,致使人们对颜色判断很不可靠。
在明视觉的情况下,人眼能分辨物体的细节,也能分辨颜色,但对不同波长可见光的感受性不同,因此能量相同的不同色光表现出不同的明亮程度。一般说来黄绿色看着最亮,光谱两端的红色和紫色则暗得多。不同波长的光的这种相对发光效率通常称作光谱相对视亮度函数(简称V(λ)函数)或相对发光效率函数、视见函数等,可用光谱相对视亮度曲线表示(见图 )。V(λ)函数是人们看不同色光时产生同等亮度感觉所需要的能量的倒数,即V(λ)=1/E(λ)。式中:V(λ)为相应波长λ的光谱视亮度函数值;E(λ)为波长λ的单色光能量。目前通用的V(λ)函数主要是K.S.吉布森和E.P.T.廷德尔用步进法与W.科布伦茨和W.B.埃默森用闪烁法测定结果的平均值。1924年为国际照明委员会(简称CIE)所采纳。其峰值在555纳米处。
CIE V(λ) 函数是根据白种人眼的测定材料确定的。后来有好几位学者对不同人种(埃及人、高加索人、中非人等)的V(λ)函数进行过测定。结果表明,非白种人的视亮度函数在短波段比CIE V(λ)低些。中国心理学家和生理学家近年来用闪烁法对V(λ)函数进行了测定,结果表明:①中国人眼的V(λ)函数与CIE V(λ)函数很一致。目前尚无充分证据证明人种学上的差别影响V(λ)函数;②随着年龄的增长,光谱短波一侧的V(λ)函数有降低的趋势,这主要是由于水晶体发黄所致。
近60年来不断有人对CIE V(λ)函数提出异议,比较集中的意见是短波段偏低。1951年D.B.贾德提出对CIE V(λ)函数在短波段的修正值。随着气体放电光源和单色光源的发展,CIE V(λ)函数越来越不能满足需要。中国计量科学研究院和中国科学院心理研究所协作,用异色明度匹配法研究V(λ)函数。实验数据已被国际照明委员会采纳,列入1988年CIE第75号出版物推荐的V(λ)2°视场(简称Vb12(λ))和V(λ)10°视场(简称Vb110(λ))的国际平均值中。
除年龄外,实验条件和采用的研究方法均影响V(λ)函数,如在明视觉条件下,观察大面积表面时,由于黄斑色素的影响不同和杆体细胞参加,V(λ)曲线比2°视野的V(λ)曲线略有变动。
就正常人眼来说,杆体细胞本身并不能产生彩色视觉,它们只产生无彩色的白、灰和黑的视觉,反以在微光条件下,一切物体呈中性色。暗视觉的光谱相对视亮度函数(简称V′(λ)函数)曲线较V(λ)曲线向短波方面偏移如上图。这说明对长波的感受性降低,而对短波的感受性提高了。这种现象称为普尔金耶现象。
CIE V′(λ)函数是1951年 CIE根据B.H.克劳福德用直接比较法和G.沃尔德用阈限法所得结果推荐使用的。其峰值在507纳米处。这条曲线代表30岁以下经过完全暗适应的观察者,在刺激物离开中央凹超过5°时杆体细胞的平均光谱感受性。V′(λ)曲线的形状主要决定于杆体细胞的感光化学物质对不同波长的吸收特性。视紫红质的吸收曲线与V′(λ)曲线很相似。近年来中国心理学家用直接比较法测定了中国人的V′(λ)结果表明:①V′(λ)曲线形状与CIE V′(λ)曲线形状比较接近,峰值稍向长波位移;②年龄对函数也有影响。
人眼对于亮度约为 10-3~3尼特的光刺激的感觉叫做间视觉。在间视觉中杆体细胞和锥体细胞同时活动并相互作用,它们的相应关系不断变化,致使人们对颜色判断很不可靠。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条