1) OCS in AT power supply
AT供电制接触网
1.
In view of the exixting problem of relatively low voltage of OCS of a certain electrified railway, the article analyzes the characteristics of several commonly used voltage compensation schemes and raises the solutions for one feeding section loaded automatic transformer applicable to the OCS in AT power supply.
针对某条电气化线路接触网电压偏低问题,分析了几种常用电压补偿方案的特点,提出了适合AT供电制接触网的自耦变压器单臂有载自动调压的解决方案。
4) contactless power supply
无接触供电
1.
Study on coupling characteristics of contactless power supply system for moving apparatus;
运动设备无接触供电系统耦合特性的研究
2.
Study on New Contactless Power Supply System;
新型无接触供电系统的研究
5) overhead current collection
接触网受电
6) Current of Overhead Line
接触网电流
补充资料:接触网
沿电气化铁路、城市交通电动车辆运行线路架设的特殊形式的供电线路。来自牵引变电所的电能通过接触网和装在车上的受流器向电力机车或电动车辆供电。通常要求接触网在任何气象因素(冰、风、雨、雪等)和最大运行速度下能保证安全供电,并有良好的耐磨、抗腐蚀、电损耗小等性能。
分类 根据供电对象不同,接触网分为架空悬挂和接触轨(第三轨)两种基本形式。架空悬挂式接触网又可按其纵向索线的数目和特点,分为简单悬挂和链形悬挂两种。前者弛度大、悬挂弹性不均匀,主要用在电车或工矿机车专用线上;后者接触导线纵向有张力调节装置,并使用承力索、吊弦和弹性吊弦,使接触导线在不同温度下都处于无弛度状态。
结构组成 铁道干线常用的架空链形悬挂式接触网如图所示。图中1和2是立于路侧的接触网支柱及其基础,通常由金属和预应力钢筋混凝土做成,用来悬挂接触网。为了维修方便、缩短断线故障范围并进行不同温度下悬挂的张力补偿,接触网悬挂分成独立的锚段(即区段),每个锚段的中部设有中心锚结,使悬挂不能纵向移动,而两端则有重力式张力调节装置(图中未绘出),在不同温度下,可保持接触网的张力一定。图中3和4是腕臂式支持装置和绝缘子,它们和定位肩架9、棒式绝缘子10、定位管11一起,使接触导线稳定地悬挂于线路的上方。图中5、6、7、8分别为承力索、吊弦、弹性吊弦和接触导线,12为受流器,又称受电弓。为了避免接触导线对受流器滑板的集中磨耗,以提高滑板的使用寿命,并使滑板的受磨部位较为均匀,接触导线在直线区段均布置成之字形,即使在最强烈的风力下,导线的偏移也不超出受电弓滑板的工作范围。为了减小故障范围、便于检修以及使各相负荷较为平衡,接触网还设有分段装置,即所谓电分段装置和电分相装置。早期采用的电分段装置用四跨锚段关节;相分段装置用六跨和八跨式绝缘锚段关节。这些装置比较复杂,无电区长且投资大。70年代以来中国利用玻璃钢等材料,造出多种形式的分段绝缘器和分相绝缘器,使两区段间的过渡区缩短到只需十几米。
地下铁道由于净空限制,一般采用第三轨,即在行车轨道的一侧,用绝缘支架架设一条离地约400毫米高的第三轨。第三轨由高导电率的特殊软钢制成,地铁电动车辆通过安装在它侧面的受流器(接触靴),与第三轨摩擦接触而获得电能。中国北京的地铁和世界一些国家的地铁都采用第三轨受电。70年代前后,有些国家建设的地铁以及80年代开始筹建的中国上海地铁,由于地下和地面联运以及接触网电压上升到1500伏等原因,均采用较为安全并可充分利用隧道圆形截面顶部空间的架空接触网,再通过装在动车顶上的受电弓获得电能。
分类 根据供电对象不同,接触网分为架空悬挂和接触轨(第三轨)两种基本形式。架空悬挂式接触网又可按其纵向索线的数目和特点,分为简单悬挂和链形悬挂两种。前者弛度大、悬挂弹性不均匀,主要用在电车或工矿机车专用线上;后者接触导线纵向有张力调节装置,并使用承力索、吊弦和弹性吊弦,使接触导线在不同温度下都处于无弛度状态。
结构组成 铁道干线常用的架空链形悬挂式接触网如图所示。图中1和2是立于路侧的接触网支柱及其基础,通常由金属和预应力钢筋混凝土做成,用来悬挂接触网。为了维修方便、缩短断线故障范围并进行不同温度下悬挂的张力补偿,接触网悬挂分成独立的锚段(即区段),每个锚段的中部设有中心锚结,使悬挂不能纵向移动,而两端则有重力式张力调节装置(图中未绘出),在不同温度下,可保持接触网的张力一定。图中3和4是腕臂式支持装置和绝缘子,它们和定位肩架9、棒式绝缘子10、定位管11一起,使接触导线稳定地悬挂于线路的上方。图中5、6、7、8分别为承力索、吊弦、弹性吊弦和接触导线,12为受流器,又称受电弓。为了避免接触导线对受流器滑板的集中磨耗,以提高滑板的使用寿命,并使滑板的受磨部位较为均匀,接触导线在直线区段均布置成之字形,即使在最强烈的风力下,导线的偏移也不超出受电弓滑板的工作范围。为了减小故障范围、便于检修以及使各相负荷较为平衡,接触网还设有分段装置,即所谓电分段装置和电分相装置。早期采用的电分段装置用四跨锚段关节;相分段装置用六跨和八跨式绝缘锚段关节。这些装置比较复杂,无电区长且投资大。70年代以来中国利用玻璃钢等材料,造出多种形式的分段绝缘器和分相绝缘器,使两区段间的过渡区缩短到只需十几米。
地下铁道由于净空限制,一般采用第三轨,即在行车轨道的一侧,用绝缘支架架设一条离地约400毫米高的第三轨。第三轨由高导电率的特殊软钢制成,地铁电动车辆通过安装在它侧面的受流器(接触靴),与第三轨摩擦接触而获得电能。中国北京的地铁和世界一些国家的地铁都采用第三轨受电。70年代前后,有些国家建设的地铁以及80年代开始筹建的中国上海地铁,由于地下和地面联运以及接触网电压上升到1500伏等原因,均采用较为安全并可充分利用隧道圆形截面顶部空间的架空接触网,再通过装在动车顶上的受电弓获得电能。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条