1) discrete fracture network
离散裂隙网络
1.
A numerical model of three-dimensional discrete fracture networks for seepage in fractured rocks is presented.
对于裂隙岩体中的渗流来说,离散裂隙网络模型比等效连续体模型更能刻画其基本规律。
2.
The paper analyzed the spatial character of water-bearing media in abandoned mines,then according to the distribution characteristics of lage-scale fault and the rock permeabitity,established discrete fracture network-equivalent continuous media coupling mathematic model.
分析废弃矿井地下含水介质空间特性,根据其大型断裂带分布特征及其分割岩块渗透性等,建立地下水流离散裂隙网络与等效连续介质耦合数学模型。
2) discrete joint network model
离散裂隙网络模型
1.
The article describes the regulation of the joint in the soft and hard interbedded rock,establishes a discrete joint network model of the interbedded rocks.
叙述软硬互层状岩体中的裂隙发育规律,并由此建立了互层状岩体渗流的离散裂隙网络模型。
3) fracture network
裂隙网络
1.
Numerical simulation of grouting in space fracture network of rock mass;
空间岩体裂隙网络灌浆数值模拟研究
2.
3-D seepage flow model for discrete fracture network and verification experiment;
三维离散裂隙网络渗流模型与实验模拟
3.
Analysis of nonlinear seepage through fracture network in rock mass;
岩体裂隙网络非线性渗流分析
4) Fissure network
裂隙网络
1.
Based on the discrete numerical model of seepage flow of initial fissure network, a new numerical analysis method, rigid-body element method, is used to carry out the coupling analysis of seepage flow field of fissure network and the stress field in fissured rock masses.
基于裂隙岩体初始裂隙网络渗流的离散数值模型,首次采用新的数值方法——刚体元方法进行裂隙岩体裂隙网络渗流场─—应力场耦合分析,既避免了经典渗流理论不考虑介质应力的不足,又克服了工程岩体稳定性分析中简单考虑水渗流作用的缺陷。
2.
Based on the principle of isotope tracer in single well, and combing with well-theory of seepage flow, a mathematic model of two-dimension fissure network is proposed in the paper.
在应用单孔同位素示踪原理的基础上 ,结合地下水渗流井流理论 ,建立了二维裂隙网络的渗流计算模型。
5) joint network
裂隙网络
1.
Analysis of joint network simulation method and REV scale;
裂隙网络模拟与REV尺度研究
2.
Using experimental results of little scale,associated with joint networks,then u- tilizing sophisticated static equivalence of anisotropic deformation parameters in a large scale become an effective met.
在进行动力计算时,如何获取节理岩体的动力变形参数是一个比较困难的问题,利用小尺度试件的试验成果,结合岩体裂隙网络,利用静力等效原理确定大尺度下岩体的各向异性变形参数,不仅适用于静力工况,对于动力参数也有较好的效果。
6) fractured network
裂隙网络
1.
Numerical analysis of the steady seepage field in fractured network rock mass considering the effect of temperature;
考虑温度影响的岩体裂隙网络稳定渗流场数值分析
2.
Numerical analyzing method of non continuum seepage in fractured network in combining with the method of engineering geology survey is used to analyze the seepage in the network of fractured rock mass around the Shibianyu water supply holes.
利用非连续介质裂隙网络渗流数值分析方法结合工程地质勘察方法 ,对石砭峪供水洞进行裂隙网络渗流分析。
3.
According to the experiment studies of saturated-unsaturated flow in a single fracture, the ex-periment relatlonships of saturation to pressure head and saturated-unsaturated hydraulic conductivity to pres-sure head of fractured rock masses are established Subsequently, the saturated-unsaturated seepage flow mod-el of 3-dimensional fractured network under rainfall is built.
根据单裂隙饱和-非饱和渗流实验结果,确立了裂隙岩体渗流时饱和度与负压及饱和-非饱和渗透系数与负压之间的实验关系式,进而建立了有暴雨入渗下三维裂隙网络饱和-非饱和渗流数学模型,针对龙滩水电站左岸蠕变体边坡进行了不同工况下的渗流与稳定性分析,并相应给出了其高边坡工程安全施工建议措施。
补充资料:离散时间周期序列的离散傅里叶级数表示
(1)
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条