1) fully coupled THM
THM完全耦合
2) THM coupling
THM耦合
1.
Review of current research on application of THM coupling of rock mass;
岩体THM耦合应用研究现状综述
2.
Establishment of THM coupling governing equations in rock masses;
岩体THM耦合模型控制方程建立
3.
According to the THM coupling mechanics analysis,the governing equations including those in mechanical,hydrological and thermal fields are theoretically derived in term of displacements,pore pressure and temperature.
从理论出发推导出以位移、孔隙压力和温度为未知量的THM耦合控制方程组,包括岩块变形场方程、地下水连续性方程和岩体的能量守恒方程,并通过有限元离散,编制三场耦合模拟程序,通过算例验证程序的可靠,之后通过含热源算例来研究耦合过程。
3) THM coupling theories
THM耦合理论
1.
Based on the high-level radioactive waste disposal types,the relative research projects are proposed;and the THM coupling theories are introduced.
在介绍高放废物处置形式的基础上,提出高放废物处置的相关研究课题,紧接着阐述高放废物处置中THM耦合理论,膨润土的土水特征曲线不仅相关于外部施加应力、蒸汽压力、水压力,而且也相关于温度;在考虑气体在压力作用下的传播、气体在水中的溶解和气体的凝固等影响下,建立气体和液体中的水量守恒方程;在考虑敏感热流和潜热流影响下,建立能量守恒方程;将所有的方程写成有限元和有限差分计算格式;最后编制一维计算程序。
5) k-b model
THM三场耦合
6) fully coupled
完全耦合
1.
The deformation of slope caused by change of ground water level was investigated by adopting a fully coupled procedure and the stat.
本文采用完全耦合有效应力分析程序和与状态相关的剪胀性砂土模型模拟斜坡因地下水位变化而发生的变形。
补充资料:jj 耦合
由给定电子组态确定多个价电子原子的能量状态的一种近似方法。它适用于原子中各价电子间的静电斥力势能之和远小于各价电子的自旋轨道磁相互作用能之和的情况,单个电子的轨道角动量pli将和其自旋角动量psi耦合成该电子的总角动量pji,,ji是第i个价电子的总角动量量子数,媡=h/2π,h是普朗克常数。
以两个非等效电子为例,设电子组态为(n1l1n2l2),n1、n2和 l1、l2分别为两电子的主量子数和轨道量子数,电子的自旋量子数都为1/2,即s1=s2=1/2,按原子的矢量模型,电子轨道角动量 pli与自旋角动量 psi耦合,。原子jj 耦合的多重谱项则由各种可能的(j1j2)确定,不同谱项间能量差别相对来说比较大,而两电子间静电作用使与耦合成原子的总角动量PJ,pJ=+,J为原子总角动量量子数,J=j1+j2,j1+j2-1,...,|j1-j2|,由于这种静电作用远小于电子的轨道与自旋相互作用,因此同一多重谱项中由于电子间静电作用而引起的不同J值的能态间距是很小的。jj 耦合形成的原子态符号是(j1j2)J 。
对于等效电子(见原子结构),耦合时要考虑泡利不相容原理,所形成的原子态要比非等效电子形成的原子态少。例如两个等效p电子经jj 耦合只能形成、、五种原子态,而两个非等效p电子经jj 耦合将形成、、和等十个原子态。
jj 耦合常适用于确定重元素原子的受激态和轻元素原子的高受激态,有时还适用于确定重元素的基态(例如Pb原子的基态)。
以两个非等效电子为例,设电子组态为(n1l1n2l2),n1、n2和 l1、l2分别为两电子的主量子数和轨道量子数,电子的自旋量子数都为1/2,即s1=s2=1/2,按原子的矢量模型,电子轨道角动量 pli与自旋角动量 psi耦合,。原子jj 耦合的多重谱项则由各种可能的(j1j2)确定,不同谱项间能量差别相对来说比较大,而两电子间静电作用使与耦合成原子的总角动量PJ,pJ=+,J为原子总角动量量子数,J=j1+j2,j1+j2-1,...,|j1-j2|,由于这种静电作用远小于电子的轨道与自旋相互作用,因此同一多重谱项中由于电子间静电作用而引起的不同J值的能态间距是很小的。jj 耦合形成的原子态符号是(j1j2)J 。
对于等效电子(见原子结构),耦合时要考虑泡利不相容原理,所形成的原子态要比非等效电子形成的原子态少。例如两个等效p电子经jj 耦合只能形成、、五种原子态,而两个非等效p电子经jj 耦合将形成、、和等十个原子态。
jj 耦合常适用于确定重元素原子的受激态和轻元素原子的高受激态,有时还适用于确定重元素的基态(例如Pb原子的基态)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条