说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 矢量推力的涵道螺桨
1)  vectored thrust duct propeller
矢量推力的涵道螺桨
2)  ducted propeller
涵道螺旋桨
1.
The mathematical model of vortex intensity is set up for ducted propeller blades, and used for optimum design of the blades.
根据Theodorsen的片条理论、涵道后缘的库塔条件以及边界页微元涡丝的诱导方程,构筑了涵道螺旋桨叶片涡强度分布的计算模型,用该模型代替Prandtl的动量损失函数及环量函数,将自由螺旋桨的最小能量损失的设计方法加以推广,优化设计了涵道螺旋桨。
2.
It is usually used as a lifting device in aircrafts because of its high efficiency and high safety, but the interaction between duct and propeller cause a great difficulty in calculating ducted propeller aerodynamic characteristics.
涵道螺旋桨是涵道和螺旋桨的组合体,其气动效率高、安全性能好,常用作飞行器的升力系统,但由于涵道和螺旋桨相互干扰,涵道螺旋桨的气动特性计算比较复杂。
3)  vectored thrust ducted propeller
涵道风扇矢量推进系统
1.
Measurement investigation on the aerodynamics of vectored thrust ducted propeller
高速直升机涵道风扇矢量推进系统模型悬停状态的气动力测量研究
4)  propulsion thrust
螺旋桨推力
1.
When a ship goes in waves, the propulsion thrust will fluctuate remarkably.
舰船在风浪中摇荡时,螺旋桨推力将发生明显变化。
5)  thrust vector
推力矢量
1.
Investigation on a thrust vector design scheme of ramjet;
一种冲压发动机推力矢量设计方案研究
2.
Design of thrust vector measuring system for engine;
发动机推力矢量测试系统的设计
3.
Researches of dorsal support interference in low speed wind tunnel thrust vector test;
低速风洞推力矢量试验背撑干扰特性试验研究
6)  Thrust vectoring
推力矢量
1.
Attitude control of thrust vectoring unmanned aerial vehicle based on brain emotional learning
基于大脑情感学习的推力矢量无人机姿态控制
2.
A study on the integrated flight and propulsion control system(IFPCS) with the thrust vectoring for a cer-tain type of unmanned aerial vehicle(UAV) is carried out.
以某无人机为背景,主要研究大机动时带推力矢量的综合飞行/推进控制系统的设计方法。
3.
The design of the flight control system with the thrust vectoring is discussed.
研究了带推力矢量飞机过失速非线性飞行控制问题。
补充资料:推力矢量技术

简而言之,推力矢量技术就是通过偏转发动机喷流的方向,从而获得额外操纵力矩的技术。

我们知道,作用在飞机上的推力是一个有大小、有方向的量,这种量被称为矢量。

然而,一般的飞机上,推力都顺飞机轴线朝前,方向并不能改变,

所以我们为了强调这一技术中推力方向可变的特点,就将它称为推力矢量技术。

不采用推力矢量技术的飞机,发动机的喷流都是与飞机的轴线重合的,产生的推力也沿轴线向前,

这种情况下发动机的推力只是用于克服飞机所受到的阻力,提供飞机加速的动力。

采用推力矢量技术的飞机,则是通过喷管偏转,利用发动机产生的推力,获得多余的控制力矩,实现飞机的姿态控制。

其突出特点是控制力矩与发动机紧密相关,而不受飞机本身姿态的影响。

因此,可以保证在飞机作低速、大攻角机动飞行而操纵舵面几近失效时利用推力矢量提供的额外操纵力矩来控制飞机机动。

第四代战斗机要求飞机要具有过失速机动能力,即大迎角下的机动能力。

推力矢量技术恰恰能提供这一能力,是实现第四代战斗机战术、技术要求的必然选择。

我们可以通过图解来了解推力矢量技术的原理。

普通飞机的飞行迎角是比较小的,在这种状态下飞机的机翼和尾翼都能够产生足够的升力,保证飞机的正常飞行。

当飞机攻角逐渐增大,飞机的尾翼将陷入机翼的低能尾流中,造成尾翼失速,飞机进入尾旋而导致坠毁。

这个时候,纵然发动机工作正常,也无法使飞机保持平衡停留在空中。

然而当飞机采用了推力矢量之后,发动机喷管上下偏转,产生的推力不再通过飞机的重心,产生了绕飞机重心的俯仰力距,

这时推力就发挥了和飞机操纵面一样的作用。由于推力的产生只与发动机有关系,这样就算飞机的迎角超过了失速迎角,

推力仍然能够提供力矩使飞机配平,只要机翼还能产生足够大的升力,飞机就能继续在空中飞行了。

而且,通过实验还发现推力偏转之后,不仅推力能产生直接的投影升力,还能通过超环量效应令机翼产生诱导升力,使总的升力提高。

装备了推力矢量技术的战斗机由于具有了过失速机动能力,拥有极大的空中优势,

美国用装备了推力矢量技术的x-31验证机与f-18做过模拟空战,结果x-31以1:32的战绩遥遥领先于f-18。

使用推力矢量技术的飞机不仅其机动性大大提高,而且还具有前所未有的短距起落能力,

这是因为使用推力矢量技术的飞机的超环量升力和推力在升力方向的分量都有利于减小飞机的离地和接地速度,缩短飞机的滑跑距离。

另外,由于推力矢量喷管很容易实现推力反向,飞机在降落之后的制动力也大幅提高,因此着陆滑跑距离更加缩短了。

如果发动机的喷管不仅可以上下偏转,还能够左右偏转,那么推力不仅能够提供飞机的俯仰力矩,还能够提供偏航力矩,这就是全矢量飞机。

推力矢量技术的运用提高了飞机的控制效率,使飞机的气动控制面,例如垂尾和立尾可以大大缩小,从而飞机的重量可以减轻。

另外,垂尾和立尾形成的角反射器也因此缩小,飞机的隐身性能也得到了改善。

推力矢量技术是一项综合性很强的技术,它包括推力转向喷管技术和飞机机体/推进/控制系统一体化技术。

推力矢量技术的开发和研究需要尖端的航空科技,反映了一个国家的综合国力,目前世界上只有美国和俄罗斯掌握了这一技术,

f-22和su-37就是两国装备了这一先进技术的各自代表机种。

我国现在也展开了对推力矢量技术的预先研究,并取得了一定的成果,相信在不远的将来,我们的飞机也能够装备上这一先进技术翱翔蓝天,

增强我国的国防实力。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条