1) linear stationary iteration
一阶线性定常迭代法
1.
Firstly, the paper analyzes and summarizes several algorithms of linear stationary iteration and their acceleration methods, and presents the formula and convergence and analyzes the parallel algorithm.
首先,从理论上分析和总结了一阶线性定常迭代法及其加速方法,给出了它们的计算公式、收敛条件,分析了这类算法的并行实现方法;然后,通过分布式环境下的数值实验,比较了这些算法的性能,从而验证了加速方法的可行性。
2) stationary iterative method
定常迭代法
3) linear two-step stationary iteration
两步线性定常迭代
4) nonstationary iterative methods
非定常迭代法
5) nonstationary iterative method
不定常迭代法
6) First-and pth-order iterative method
一阶与p阶迭代法
补充资料:二阶线性常微分方程
二阶线性常微分方程
f the second order linear ordinary differential equation
[译注1定义万柱人妙份丫,.’‘二阶线性常微分方程〔h幽田优由圈叮J价魏‘闭闪娜仲.of加涨泊.记份山r;月姗e盛肋e脚例姆PeH.田.油.oe冲a-,~咖poro nop.那口] 形如 x“+P(r)x’+住(t)x=r(t)(l)的方程,其中x(t)是未知函数,夕(t),叼(r),r(t)是给定的在某个区间(a,b)内连续的函数.对于任何实数x。,x。以及r。‘(a,b),存在(1)的定义于所有作(a,b)的唯一解x(O。满足初始条件x(t。)=x。,x‘(t。)=x 6.如果义,(t)和xZ(t)是对应的齐次方程(homo-罗neouS equation) x‘’+夕(t)x‘+叮(t)x=o(2)的线性无关的解,而x。(t)是非齐次方程(l)的一个特解,则(l)的通解(罗nenllsolution)由公式 X(t)=x。(t)+C .xt(t)+CZxZ(t)给出,其中C,,CZ是任意常数.如果已知(2)的一个非零解x:(t),则此方程的另一个与x:(t)线性无关的解由公式 。 exp(一f,(:)、:) ‘2(亡)一‘1(‘)Jee一一及万~石5一一一d亡给出.如果已知(2)的两个线性无关的解x」(t)和x:(t),则可用常数变易法(vanat10n of constants)求出(1)的一个特解x。(t). 在研究(2)时,把它变换为其他类型的方程起着重要作用.例如,通过变量替换x二x;,x‘=xZ,方程(2)就转化为一阶线性方程构成的正规方程组;作未知函数替换 二一,exnr一令f,(。)己:、, ‘一丫\ZJ“一‘一/’方程(2)就转化为方程y”+R(t)y二0,其中 ;(。)一冬,,(:)一粤,,(。)+。(亡) 2上、一户4称为方程(2)的不变量(m珑川ant ofan以luation);作变量替换x’=yx,方程(2)就转化为Ria习ti方程(Riccati明L以tion) 夕’+夕’+夕(r)夕+g(t)=0.乘以 ,(:)一exn(丁,(:)d:)后,方程(2)就采取自伴形式 (P(r)x’)‘十P(t)q(t)x=0. 方程(2)只在少数几种情形才能由求积来积分;不可积方程(2)的一些最重要的特别类型则产生各种特殊函数(spec妞丘mCtion). 关于零点分隔的Stunn定理(Stujnlt坛”rern)二如果x:(t),xZ(t)是(2)的线性无关的解,t,,tZ(r,
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条