1) convex positive solution
向上凸正解
2) concave positive solution
向下凸正解
1.
On concave positive solution of a two-second three-point boundary value problem;
一类二阶三点边值问题的向下凸正解
3) positive radial solution
径向正解
1.
We give prior estimates at first,then existence and uniqueness of positive radial solution of the problem are also given.
讨论了二阶半线性椭圆方程△u+f(u)=0在环域中的Dirichlet问题,未对f(u)给出增长(临界)指数α=n+2n-2的限制,给出了径向正解的先验估计,以及径向正解的存在唯一性。
2.
Under some assuptions , by meams of varitional method we obtain that there are two distinct positive radial solutions.
在适当的条件下,运用变分方法我们得到了该方程存在两个非平凡径向正
3.
The present paper proves tht the singular boundary value problem for nonlinear ellipticequations in annular dOmainshas a unique positive radial solution l
证明了环域上一类非线性椭圆方程奇异边值问题在中径向正解的存在性和唯一性。
4) Positive radial solutions
径向正解
1.
It is proved that the positive radial solutions o f this equation are singular or regular if the growth speed of f(x,·) is le ss than N(p(x)-1)N-p(x) when u→∞.
给出了一类 p(x) - Laplace方程径向正解的分类和奇异解的存在
5) positive radial solution
正径向解
1.
Existence of positive radial solutions for an elliptic system;
一类椭圆系统正径向解的存在性
2.
In this paper,based on the classical fixed point theorem of cone expansion/compression type and comparison principle,we consider existence and multiplicity of positive radial solution for elliptic systems with sign-changing linear terms on an annulus.
基于经典的锥拉伸锥压缩不动点定理以及比较原理,文章考虑环域上一类带变号线性项的椭圆系统正径向解的存在性与多重性。
3.
This paper discusses the existence of positive radial solutions for nonlinear elliptic boundary value problem in exterior domain Ω= {x ∈ RN|||x||> R}:where g(r) and f(u) are nonnegative continuous functions.
本文讨论球外部区域Ω={x∈RN||x|>R}上非线性椭圆边值问题正径向解的存在性,其中g(r),f(u)为非负连续函数。
6) forward annotation
正向注解
补充资料:凸凸
1.高出貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条