说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 微分中值命题
1)  proposition of differential mean value
微分中值命题
2)  median proposition
中值命题
1.
Several ways of establishing auxiliary function to testi fy median proposition;
中值命题证明中构造辅助函数的几种方法
2.
The essay builds the integral upper limit function to obtaining other proof about theorem of integral first median value, and combine with theorem of calculus median value to proving Integral equality, inequality and median proposition.
通过构造积分上限函数,给出积分第一中值定理的另一证法,并结合微积分中值定理证明积分等式、积分不等式与定积分的中值命题。
3)  Differential mean value
微分中值
1.
The constant K-value method of constructing auxiliary functions in differential mean value problems;
微分中值问题中构造辅助函数的常数K值法
2.
A constant-k-value method is introduced to prove a class of differential mean value theorem,based on which two propositions related are constructed.
给出了一类微分中值定理的证明方法———常数K值法;借助这种方法构造出了两个与微分中值有关的命题。
4)  Value proposition
价值命题
1.
"The harmonious society" is a value proposition rather than a fact proposition.
"和谐社会"是价值命题,而非事实命题;是非理性思潮与理性思潮的再激荡;是中国传统与现代超越的经典组合,定位表述更准确;实现"和谐社会"的前提是公平和正义,途径是提高生活质量。
2.
Based on the Value Proposition of manufacturing enterprises the author proposed the Signoid Curve method which can break the Path-dependence and has sustainable innovating power,thus providing a new method for the sustaina.
本文是基于创新知识及制造业创新知识的再认识,结合路径依赖理论,指出了创新知识也具有路径依赖的特性,并定义了创新知识路径依赖的临界点,提出了基于制造业企业自身价值命题的判断而持续创新。
5)  hit problem
命中问题
1.
In the process of solving hit problem of artillery,the main methods of firing table data processing are approximation and interpolation.
基于对射表数据进行插值处理的基础上,用一种解非线性方程的迭代方法对解命中问题进行研究,这种方法可避免导数计算,收敛较快。
6)  senior middle school-entrance exam
中考命题
1.
Social practice is not only an important proposition of today s quality education, but also the direction of the senior middle school-entrance exam.
它既是当今素质教育的重要课题 ,也是近几年中考命题的方向。
补充资料:微分边值问题的差分边值问题逼近


微分边值问题的差分边值问题逼近
approximation of adifferentia) boundary value problem by difference boundary value problems

  微分边值问题的差分边值问题通近{即proxlm浦训ofa山fferential肠扣nd即卿阁此pn由lemby山ffe悦n沈b侧n-da仔耐ue pn由lems;all即旧K。肠,au舰皿呻加脚.胆,日峨成峥ae侧甫,阴,加琳3“心犯川角! 关于未知函数在网格_[的值的有限(通常是代数的)方程组对微分方程及其边界条件的一种逼近.通过使差分间题的参数(网格步长)趋于零,这种逼近会越来越准确. 考虑微分边值问题L:、二0,lu!l二O的解“的川算,其中L“=0是微分方程Iu!二0是一组边界条件.u属于定义在边界为r的给定区域从上的函数所组成的线性赋范空间U设D、。是网格(llL微分算子的差分算子通近(approx,matlon of a ditTere;ltl;,1 op-erator by differe们优。详rators)),并设U*是rlJ定义价该网格上的函数。*所组成的线性赋范空间.设卜j、厂函数v在几;的点上的值表卜在打。中引进范数使得对任意的函数,;〔创,以手‘等式成盆: 恕伽训、·三{训‘现在用近似计算“在D*。中的点上的值表luJ的问题一/*{司、=0代替求解“的问题.这里了*【川。是一组关一)网格函数。*任U。的值的(作微分)方程 设。*是U、中的任意函数.令二。。、二叭片设小是线性赋范空间,对任意的叭6u*有势*。中,二称才*“*二0是对微分边值问题L“二0,l川,一0石其解空间_L的P阶有限差分逼近,若 {}了*lu奴{}。*二O(h尸)方程组J、“*=0的实际构造涉及分别构造它的两个子方程组IJ*u*=o和l、u*}。二0.对L*u儿=0,使用微分方程的差分方程通近(approximat,on。》f a dll化r‘:ntia}equation by differer,沈equations).附加方程I。,、、}:=(”利用边界条件l川。=0来构造. 对无论怎样选取的U、与中人的范数,上面所描述的逼近都无法保证差分问题的解u、收敛到准确解“(见{2]),即等式 {,砚}1 lul*一“六{}、;。成立. 保证收敛性的附加条件是稳定性(见{3!,{5!18]),有限差分间题必须具有这一性质.称有限差分间题了r八“、=0是稳定的,若存在正数占>oh。>0使得对任意毋*‘。*,}一甲*{}<。,h<权,方程一气:二甲*有唯一解:*已认,且此解满足不等式 1}:儿一u*}}:。“{}。、}{。,其中C是与h或右端扰动叭无关的常数,“、是无扰动问题一/*。=O的解‘如果褂于问题的解u存在同时差分问题气“、二O关于解“以p阶精度逼近微分问题,而且是稳定的,则差分问题具有同样阶的收敛性,即 }1[uL一吟}l叭=O(hp). 例如,问题 ,,、_au au L(“)三.举一拼=0,I>0.一的1,则无论取什么范数都无收敛性.如果;簇1,且范数为 !lu‘}!,=suo}“几}.则问题(2)是稳定的,因而有收敛性(见[2],[3]): 11[uL一价l,认=O(内). 差分问题代替微分问题是用计算机近似求解微分边值问题的最通用的方法之一(见【7]). 微分问题用其差分的近似代替开始于!l],【2]和[41等著作.这一方法有时还用来证明微分问题解的存在,按下述方案进行,先证明微分边值问题的差分近似的解。*的集合对h是紧的,然后即可证明某一子序列u‘在h*~0时的极限是微分问题的解认如果该解已知是唯一的,则不仅子序列,而且整个u。集在h~0时都收敛到解u.【补注】补充的参考文献见微分算子的差分算子通近(aPpoximation of a di亚rential operator by diffe-ren沈operators)的参考文献.
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条