说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 广义Lagrange乘子法
1)  generalized Lagrangian multiplier method
广义Lagrange乘子法
1.
A procedure for finding the optimal solutions is provided by combining the generalized Lagrangian multiplier method with proof by contradiction.
广义Lagrange乘子法与反证法相结合,给出模型最优解的求解过程。
2)  generalized constrained Lagrange coefficients
约束广义Lagrange乘子
3)  Lagrange multiplier method
Lagrange乘子法
1.
Modified Lagrange multiplier method and its convergence analysis;
改进Lagrange乘子法及收敛性分析
2.
Deriving Variational Principles in Elasto-dynamics by Undetermined Lagrange Multiplier Method;
应用Lagrange乘子法推导弹性动力学的变分原理
3.
The control equation of the finite element method expressed by the base forces is obtained by using Lagrange multiplier method of the generalized complementary energy principle.
为了改进传统的余能原理有限元方法,利用基面力概念,提出了一种具有边中节点的单元,推导出一种余能原理有限元柔度矩阵精确表达式的具体形式和节点位移显示表达式,运用广义余能原理中的Lagrange乘子法得到以基面力为基本未知量的余能原理有限元法的支配方程,编制出相应的MATLAB语言有限元分析程序。
4)  augment lagrange multiplier
增广Lagrange乘子
5)  Lagrange multiplier
Lagrange乘子
1.
Adaptive Lagrange multiplier selection for H.264
视频编码中Lagrange乘子自适应调整算法
2.
Singularities near the corner of bodies like the trailing edge of an airfoil by the fictitious domain method with Lagrange multipliers are analyzed.
分析了用基于Lagrange乘子的虚拟区域法数值求解时,翼型后缘存在的奇异问题。
3.
A second order adjoint model(SOA model) was developed based on the theory of Lagrange multiplier.
将Lagrange乘子法引入二阶伴随模型的构造,将正模型和一阶伴随模型构建到一个目标函数中,通过对目标函数取一阶变分直接得到了二阶伴随方程,简化了二阶伴随模型的构造。
6)  Lagrangian multiplier
Lagrange乘子
1.
The parameters used in the paper were tend to multipliers (which are identical with the Lagrangian multipliers in the convex nonlinear min max problems) at the solution of  LCP (q,M) ins.
与互补问题的磨光方程组中所采用的带参数价值函数不同 ,这里的参数最终并不趋向于零 ,而是趋向于被称作解的乘子向量 (与凸非线性极小极大问题的Lagrange乘子完全一致 ) ,这一思想是本文作者首次提出来的 ,同时本文中所采用的阻尼牛顿类方法也有其独到之处 ,在互补问题的研究中有进一步发展的潜
补充资料:乘子
      傅里叶分析中通过傅里叶系数乘上一个数列,或通过傅里叶变换乘上一个函数来定义的一类算子。
  
  设P、Q 是两个具有某种特性的周期为 2π的函数类,{λk}(k=0,±1,±2,...)是给定的复数列。如果对P 中任意函数??(x)的傅里叶系数сk:乘以λk 所得到的数列{λkсk}必定是 Q中某函数g(x)的傅里叶系数,即数列{λk}确定了一个从??∈P映到g∈Q的算子T:T??=g,就称T为(P,Q)乘子,有时也直接称{λk}是(P,Q)乘子,其中P,Q可以是有界函数类B,连续函数类C,p次幂为勒贝格可积的函数类Lp,等等。
  
  数列{λk}应该满足什么条件,才是(P,Q)乘子呢?研究这类问题的定理称为乘子定理。波兰数学家J.马钦凯维奇在1939年提出了下列著名定理.
  
  马钦凯维奇乘子定理  设{λk}满足条件式中M是常数,则{λk}是(Lp,Lp)乘子(p>1),这里Lp表示周期为2π的p次幂可积函数类.
  
  对非周期函数可以类似地定义乘子。设m(x)是给定在n维欧氏空间 Rn上的一个有界可测函数,如果对于L2∩Lp中任意函数??(x)的傅里叶变换弮(y),乘积m(y)·弮(y)必定是Lp(Rn)中某个函数g(x)的傅里叶变换,并且存在常数M,使得
  式中也就是说,对一切??∈L2∩Lp,由等式
  
  所确定的算子T是Lp上的有界算子:就称T为对应于m(x)的Lp乘子算子,或简称Lp乘子,有时也直接称m(x)是一个Lp乘子。1956年苏联数学家C.Γ.米赫林证明了下面的定理。
  
  米赫林乘子定理  设m(x)在Rn中除原点外是 k阶连续可微的,其中k为大于n/2的整数,还假设m(x)的所有阶数不超过k的偏导数满足条件式中α=(α12,...,αn),αi是非负整数,│α│=α12+...+αn≤k,则m(x)是Lp乘子(p>1)。
  
  乘子算子的特点是它同平移算子可交换。平移算子τh的定义为(τh??)(x)=??(x-h),这里 h是Rn中一个向量。Lp上的有界线性算子 T是乘子算子的充分必要条件为它与平移算子可交换,即对任意h∈Rn,有 TτhhT成立。
  
  如果不通过傅里叶变换直接来表示乘子算子,那么在一定意义上说,乘子算子实际上就是卷积算子T??=??*φ,其中*表示卷积运算。
  
  设??(x)是多元函数,在研究??(x)的多重傅里叶级数的各种形式的部分和(方形和,矩形和,球形和)是否依Lp范数收敛到??(x)时,遇到下述类型的乘子问题:设m(x)是某个可测集D的特征函数ⅹD(x),
  问D具有什么样的几何形状时,ⅹD(x)是Lp乘子?这个叙述起来十分简单的问题,实际上却异常复杂。以二维的情形为例,如果D是半平面,或多边形时,ⅹD(x)是Lp乘子(p>1);但当D是单位圆时,问题就复杂得多了。一般地说,若D是n维空间的单位球,对应于ⅹD(x)的算子T是否为乘子算子的问题,被称为圆盘问题。它曾在长时期内没能解决。容易推知,对于区间以外的p,T不是 Lp上的有界算子。因此,曾有一个所谓"圆盘猜想",猜想:对于满足的一切p,T是Lp上的有界算子。为了研究此问题,美国数学家E.M.施坦与C.费弗曼先研究稍简单一些的博赫纳-里斯球形和算子Tδ:式中它和单位球的特征函数的差别在于它在 |x|=1处具有一定的光滑性。他们推测对:一切δ>0,当时,Tδ是 Lp上的有界算子。1970年费弗曼证明了当时,这个推测成立。然而,圆盘猜测却在1971年被费弗曼否定了。他通过构造反例说明:当空间维数n>1时,T只能是L2上的有界算子,若p≠2,T不可能在Lp上有界。由此可见,乘子算子的复杂性。
  
  泛函分析,微分方程中的许多算子都是乘子算子。因此,乘子定理在傅里叶分析,泛函分析,微分方程,位势理论以及数学物理中有广泛的应用。
  
  

参考书目
   J. Marcinkiewicz, Sur les Multiplicateurs des Séries de Fourier,Studia MatheMatica, T. 8, pp. 78~91, Warsaw,1939.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条