说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Dieterici物态方程
1)  Dieterici equation of mass state
Dieterici物态方程
2)  equation of state
物态方程
1.
One dimensional isentropic flow of detonation products with general equation of state;
一般物态方程形式下爆轰产物的一维等熵流动
2.
Theoretical calculation on equation of state of Nd_2Fe_(14)B at high pressure;
钕铁硼高压物态方程的理论计算
3.
Investigation of the pressure-volume-temperature equation of state for dense hydrogen-helium mixture using multi-shock compression method;
用多次冲击压缩方法研究稠密氢氦等摩尔混合气体的物态方程
3)  state equation
物态方程
1.
25, the result of the state equation approaches the result from computer simulation and is better than those from lower term virial expansion and P Y approximation.
由配分函数求出二元系统的物态方程和偏超额化学势。
2.
The simulation results are compared,the results show that the interaction between molecules can be accu- rately reflected with Lennerd-Jones model,while the state equation deduced is more consistent with experiment.
结果表明,Lennerd-Jonse 势模型能较精确地反映分子的相互作用,导出的物态方程与实验更符合。
3.
The results show that a gravitational e-quilibrium mechanism of the two-dimensional spherical may exist,if the state equation underhigh pressure and a suitable compression rate of volume are adopted.
结果表明,在采用高压物态方程及适当体积压缩比条件下,这种二维结构的引力平衡机制是可以存在的。
4)  EOS
物态方程
1.
Equation of state and molecular dissociation reactions of liquid methane at high temperature and high pressure are investigated by Statistical Mechanics and Chemical Equilibrium method,with focus on the interactions between CH 4 and H 2,which apparently would affect the equilibrium of chemical reactions and EOS of shock compressed liquid methane.
采用热力学统计理论研究了液态甲烷在高温高压下分子分解反应特点及该体系的物态方程。
2.
In this paper, the basic theory and researchful methods for EOS(equations of state)of solid, liquid and gas are stated in detail.
本文详细阐述了固态、液态和气态物态方程的基本理论和研究方法,对混合物的物态方程进行了较为系统的研究,提出了可用于描述混合物固液相变的两个模型:即混和相模型和等效物质模型,并以304钢为例,对这两种模型进行了验证。
5)  Hugoniot equation of state
Hugoniot物态方程
6)  Grüneisen equation of state
Grüneisen物态方程
补充资料:Dieterici equation of state
分子式:
CAS号:

性质:描述实际气体系统处于平衡状态时,压力p、温度T及摩尔体积Vm之间关系的一种状态方程。其表达式为:pea/RTVm(Vm-b)=RT。式中a,b是两个常数,其值因气体种类不同而异;R为气体常数。在较高温度和低压下,即分子间势能比动能小得多时,a/RTVm<1,指数项可写成:则狄特里奇状态方程演化成为与范德华方程完全相同的形式。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条