说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 动静叶栅
1)  stator and rotor cascades
动静叶栅
1.
In this paper, the shape of stator and rotor cascades was improved and the aerodynamic performance before and after improving was analyzed.
本文对动静叶栅分别进行优化改型,并对改型前后叶栅的气动性能进行数值分析。
2)  Rotor/statorinteraction
动静叶栅CFD联算
3)  stator cascade
静叶栅
1.
Numerical simulation on secondary flow control of vortex chamber in the front of turbine stator cascade;
涡漩腔控制静叶栅二次流的数值研究
2.
By adopting CFD(computational fluid dynamics)Software Fluent a numerical solution for the three-dimensional flows in turbine stator cascades featuring a big turning angle has been achieved.
采用CFD软件Fluent数值求解了大转折角涡轮静叶栅三维流动,分析了叶栅沿流向各截面二次流及叶栅的气动特性,并研究了叶高以及入口攻角变化对叶栅二次流的影响。
3.
In this paper the effects of gland leakage on the secondary flow and outlet flow fields in the governing stage stator cascade of a 300MW turbine set are simulated numerically.
以一台300MW汽轮机组的调节级静叶栅为研究对象,就轴封漏汽对叶栅二次流及出口流场的影响进行了数值模拟。
4)  hollow cascade
空心静叶栅
1.
Based on the time-averaged Reynolds N-S equations solved by using the control volume method, κ-ε turbulent mode and Lagrange approach and so on, 2D wet steam two-phase flow and the movement rule and deposition position of droplets in hollow cascade are analyzed.
基于利用控制容积法求解Reynolds时均的N-S方程、κ-ε湍流模型和Lagrange方法等模型,分析了空心静叶栅内部的二维湿蒸汽汽液两相流场和不同粒径的水滴沉积规律、沉积位置,同时在沉积位置开2种宽度、3个方向和不同数量的缝隙分别分析了抽吸和吹除两种方法对叶栅通道流场的影响以及去湿效果。
2.
Based on the time-averaged Reynolds N-S equations solved by using the control volume method, k-ε turbulent mode and Lagrange approach and so on, 2D wet steam two-phase flow and the movement rule and deposition position of droplets in hollow cascade are analyzed.
基于利用控制容积法求解Reynolds时均的N-S方程、k-ε模型和Lagrange方法等模型,分析了空心静叶栅内部的二维湿蒸汽汽液两相流场和不同粒径的水滴沉积规律、沉积位置,同时在沉积位置开2种宽度、3个方向和不同数量的缝隙分别分析了抽吸和吹除两种方法的去湿效果,并且根据计算的结果对各工况进行了效率分析。
5)  vibrating cascade
振动叶栅
1.
Using the Dual-Time Stepping Method with Moving-Grid technique to solve the Navier-Stokes equations, the numerical analysis of the unsteady aerodynamics on vibrating cascade is performed.
利用双时间方法结合运动网格求解Navier -Stokes方程 ,完成了振动叶栅非定常气动力的数值分析。
6)  cascade flow
叶栅流动
1.
By using a numerical calculation method compared and studied is the influence of different circumferential curving of guide vanes on cascade flow performance.
应用数值计算的方法 ,比较研究了某型导叶叶片不同周向弯曲对叶栅流动性能的影响 ,结果包括总压损失系数、出口气流静压、马赫数沿叶高分布。
补充资料:动静法
      根据达朗伯原理和惯性力概念求动反力的方法。力学中研究这种方法的部分称为动态静力学。
  
  质点的惯性力Q是它的质量m和加速度负值-a的乘积,即Q=-ma。质点被迫改变它的运动状态时,它的惯性表现为对主动施力物体和约束主体产生反抗,这时质点实际作用于主动施力物体和约束主体上的反作用力称为惯性反力。
  
  当质点静止时,主动力为约束力所平衡。这时的约束力称为静反力。当质点运动时,约束力称为动反力。从动反力中扣除静反力,所余部分称为附加动反力,它是由质点的惯性反力引起的。如果把质点的加速度分解为切向加速度at和法向加速度an,则惯性力Q 也就分解为两个分量:切向惯性力Qt=-mat和法向惯性力Qn=-man。例如沿半径OA=r的圆周以匀速v=rω运动的质量为 m的质点具有法向(向心)加速度an=rω2,因而该质点具有法向(离心)惯性力Qn=mrω2,其中ω为该质点绕圆心运动的角速度。如果质点是用绳子系在固定圆心O的,则法向(离心)惯性反力Qn就作用在绳子上引起附加动拉力。如果质点还具有切向(转动)加速度at=rε,则切向(转动)惯性反力Qt=mrε作用在使质点产生切向加速度at的那些物体上(图 1),其中ε为该质点绕圆心运动的角加速度。
  
  根据达朗伯原理,质点所受的主动力F、约束力N和惯性力Q三者的矢量和等于零(图2)。 这种关系常被说成"F、N、Q三者构成平衡力系",利用这三个矢量的静力平衡方程可以求出动反力。这就是动静法的实质。这种方法可以推广应用于质点系(包括刚体)。  动静法在工程上用得很多,因为它比较直观,同时利用静力平衡的形式来写独立的方程也比较容易。但是,用动静法写出的只是微分形式的方程,它的积分方法同用其他方法写出的微分方程的积分方法一样。
  
  应用动静法时,对质点系的惯性力可以象对作用于刚体的力一样作简化处理。特别是对于进行各种运动的刚体,用惯性力的简化结果可便于列出静力平衡方程。
  
  质点系惯性力的主矢RQ,恒等于质点系的全部质量Μ和质心加速度负值-aC的乘积,即RQ=-ΜaC。质点系惯性力对质心C的主矩M孯一般有较复杂的表达式。但当刚体作平动时,这个主矩等于零。当刚体绕固定轴Oz以角加速度ε转动时,刚体的惯性力对转轴的主矩M孷数值等于刚体对轴Oz的转动惯量Iz和角加速度负值-ε的乘积,即M孷=-Izε。同时,刚体内各质点的离心惯性力Qn1、Qn2...要产生对轴Ox、Oy的主矩(图3),这些惯性力矩会引起对轴承的动态压力。如果转轴Oz通过刚体的质心C(这种情形称为静平衡),同时Oz又是刚体的惯性主轴(见转动惯量),那么当这刚体作匀速转动时,惯性力的主矢和主矩都等于零。这种情形表示刚体的惯性力是自成平衡的,这种平衡称为动平衡(也称均衡)。如果动平衡的刚体不受主动力,那么它的轴承上将不出现压力,即惯性力不会传给轴承。
  
  动平衡在工程上对高速转动的机器极为重要,因为不均衡转子的离心惯性力引起的动态压力正比于角速度平方。可以通过动平衡机来测试,进而在不均衡刚体上附加或挖去一些小质量以实现动平衡。
  
  但是,即使实现了动平衡,惯性力仍要在刚体内部产生动态应力。飞轮如果转得太快,这种动态应力可能导致飞轮碎裂,这是工程设计中要考虑的。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条