1) laser diode of infrared semiconductor
红外半导体激光二极管(LD)
2) diode pumped solid-state laser (DPSSL)
半导体二极管(LD)泵浦固体激光器
3) external-cavity semiconductor laser(LD)
外腔半导体激光器(LD)
4) laser diode(LD)
半导体激光器(LD)
1.
Based on the modulation property of a laser diode(LD)and high optical spectrum resolving power of Fabry-Perot Interferometer(FPI),a method to simulate wind velocity with simple equipment is discussed.
利用半导体激光器(LD)的调制特性和法布里-帕罗干涉仪(FPI)的高光谱分辨能力设计了一种用简单设备进行大气风场模拟与测量的方法。
5) diode laser(LD)
二极管激光器(LD)
6) Laser Diode(LD)
激光二极管(LD)
补充资料:半导体材料红外测量
半导体材料红外测量
infrared measurement for semiconductor
bondaotl ealllao hongwol eellong半导体材料红外测量(infrared measurementfor semieonduetor)利用红外光谱的方法测量半导体性能,是半导体材料测量的主要内容之一。红外光谱可分为近红外(0.78一2拜m)、中红外(2一25拜m)和远红外(25一30即m)。当红外光照射某种物质时,其电磁波与该物质内部原子(或离子、分子等)相互作用,而产生选择性吸收。每种物质都有其特征的吸收光谱,这是进行成分和结构分析以及测定各种物理特性的基础。 半导体材料锗和硅中的l族和v族元素,l一v族化合物中I族和u族元素,卜”族化合物中班族、讥族元素和I族、v族元素,都能在禁带中接近价带或导带边缘产生受主能级或施主能级。每个杂质能级都有基态和一系列激发态。处于基态的杂质原子受到红外光照射后,吸收光子能量,跃迁到不同的激发态,在红外吸收谱中出现相应的吸收峰。通过红外吸收光谱的测量,已给出锗、硅和某些化合物半导体材料中各种浅能级杂质的能级谱图,并用有效质量近似法对它们做了很好的描述。特征吸收峰的强度与相应的杂质浓度有关,因此可由红外吸收测量确定杂质处于基态或激发态,从而识别杂质的种类及测定其含量。如硅中P的ZP士吸收峰特别强,常被用来测定其含量。由于浅能级杂质基态和不同激发态之间的跃迁对应的光子能量很小,相应的波长处于远红外区,并要求在低温下进行测量。在300一15。。cm一1的光谱范围内,研究了硅在退火过程中热施主的产生和消失过程,发现p型硅在45。℃下退火,可观测到9个热施主中心,得到各个中心的基态及其激发态。 半导体材料中的杂质或缺陷及其络合物的存在,破坏了晶格平移的对称性,产生了非零的偶极矩,可引起与杂质性质相关联的尖锐吸收。如果代位的或间隙的杂质原子量小于其主晶格原子量时,就可引起定域模振动吸收,其频率高于主晶格声子频率。已观测到各种半导体中一些轻元素杂质为氢、铿、硼、碳、氮、氧、铝、硅、磷等的定域模振动吸收峰。通过对这些特征振动模式的研究,可以得到晶体中有关杂质的种类及其同位素丰度、杂质位置的对称结构、杂质附近的化学键结构以及它们对晶体电子结构的影响等信息。这些振动吸收峰的强度也与相应杂质的浓度有关,如硅中的氧和碳的定域模振动吸收,己被用来作为测定其含量的标准测试方法。GaAS中的碳、硼、硅等杂质也已有相应的经验换算公式。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条