1) reciprocity
[英][,resɪ'prɔsəti] [美]['rɛsə'prɑsətɪ]
互易性
1.
If reciprocity and symmetry exist for passive two port networks of linear time invariant under zero intial condition,the circuit parameters will have some important characters.
对于线性非时变的无源二端口网络,在零初始条件下,若存在互易性及对称性,则其电路参数具有一定的特殊性。
2.
The higher-order solution formula are formulated to the problem of electro-magnetic scattering by an arbitrary array of parallel metallic wires,and the geometrical explanation of a pair of reciprocal angles contained in reciprocity theorem is also given schematically.
利用矩量法给出了对应边值问题的形式化解,其显著特征是对所有与入射角或散射角有关的公式都给出显式的角度类型标示以适于散射问题研究中互易性的准确表达。
2) reciprocity theorem
互易性定理
1.
Based on the equivalence principle and the reciprocity theorem, the multiple scattering up to Nth-order by N parallel 2-D targets arbitrarily located in a plane wave/Gaussian beam is considered.
基于等效原理和互易性定理,研究了N个相互平行二维柱体对平面波/高斯波束的电磁散射特性,给出了求解N阶散射场公式。
2.
Differential scattering field of vertical incident Gaussian beam from a two-dimensional target near a plane interface is studied by means of a new hybrid method based on the reciprocity theorem(RT),the image theory(IT) and the method of moment(MoM).
基于矩量法、互易性定理及镜像理论,提出了一种新的混合方法用于研究水平分界面上方二维介质目标对垂直入射高斯波束的差值散射场。
3.
Based on the equivalence principle and the reciprocity theorem,the problem of light scattering of plane wave/Gaussian beam from arbitrary two adjacent objects is considered and a solution that accounts for multiple scattering up to second-order is evaluated.
基于等效原理和互易性定理研究了两个靠近目标对平面波、高斯波束的光散射问题,给出了这一复合光散射模型的二阶散射结果。
3) reciprocity theorem
互易性原理
1.
By employing the reciprocity theorem, the secondary scattered fields from the composite target can be simplified as the evaluation of integral equation involving polarization currents of the conducting plate and scattered fields from the slightly rough surface.
应用互易性原理使求解复合目标的二次散射场简化为求解包含平板上的极化电流和微粗糙面散射场的积分方程。
2.
Taking the advantage of s newly developed technique that utilizes the reciprocity theorem, the difficulty in formulating the secondary scattered fields from the composite target is reduced to the evaluation of integral equation involving the polarization currents of the conducting plate and the scattered fields from the slightly rough surface.
应用互易性原理使求解二次散射场简化为求解包含平板上的极化电流和微粗糙面散射场的积分方程,从而降低了求解难度。
4) Quasi-reciprocity
似互易特性
5) reciprocity conditions
互易性条件
6) correction on reciprocity
互易性修正
补充资料:互易定理
论述某些网络具有的互易性质的定理。互易性质表现为:将网络的输入和特定输出互换位置后,输出不因这种换位而有所改变。具有互易性质的网络称为互易网络。互易性不仅一些电网络有,某些声学系统、力学系统等也有。互易定理是一个较有普遍意义的定理。
时域表述 对一个互易二端口网络NR,在时域中互易定理有3种表述。
表述一:在NR的入口接入电压源Ud时,其出口处的短路零状态响应为i2(图1a);若将电压源改接在出口上,则出现在入口处的短路零状态响应嫆1(图1b)恒与i2相等,即
嫆1(t)=i2(t)
凬t
表述二:设在NR的入口接入电流源id时,其出口处的开路零状态响应为U2(图2a);若将电流源改接在出口上,则出现在入口处的开路零状态响应(图2b)恒与U2相等,即
(t)=U2(t)
凬t
表述三:在NR的入口接入电流源id时,其出口处的短路零状态响应为i2(图3a);若在出口处接上一个与电流源id波形相同的电压源Ud,则出现在入口处的开路零状态响应(图3b)恒与i2的波形相同,即(t)=i2(t)
凬t
复频域表述 在复频域中电压、电流可用各自的拉普拉斯变换(即象函数)来表示。于是,从互易定理在时域中的表述导出它在复频域中的表述为:对于互易二端口网络NR,下列关系恒成立,即Y21(S)=Y12(S)Z21(S)=Z12(S)H21(S)=-H12(S)前两式表明互易二端口网络的Y 参数矩阵和Z 参数矩阵是对称矩阵,后式表明互易二端口网络的H 参数矩阵是反对称矩阵。
将上列诸式中的变量S换成 jω就得到正弦稳态下的互易定理。
应用条件 并非任何一个网络都具有互易性质。一般地说,由线性时不变的二端电阻元件、电感元件、电容元件、耦合电感器和理想变压器连接而成的网络均有此性质。含有受控电源、非线性元件、时变元件、回转器的网络都不一定具有这种性质。
时域表述 对一个互易二端口网络NR,在时域中互易定理有3种表述。
表述一:在NR的入口接入电压源Ud时,其出口处的短路零状态响应为i2(图1a);若将电压源改接在出口上,则出现在入口处的短路零状态响应嫆1(图1b)恒与i2相等,即
嫆1(t)=i2(t)
凬t
表述二:设在NR的入口接入电流源id时,其出口处的开路零状态响应为U2(图2a);若将电流源改接在出口上,则出现在入口处的开路零状态响应(图2b)恒与U2相等,即
(t)=U2(t)
凬t
表述三:在NR的入口接入电流源id时,其出口处的短路零状态响应为i2(图3a);若在出口处接上一个与电流源id波形相同的电压源Ud,则出现在入口处的开路零状态响应(图3b)恒与i2的波形相同,即(t)=i2(t)
凬t
复频域表述 在复频域中电压、电流可用各自的拉普拉斯变换(即象函数)来表示。于是,从互易定理在时域中的表述导出它在复频域中的表述为:对于互易二端口网络NR,下列关系恒成立,即Y21(S)=Y12(S)Z21(S)=Z12(S)H21(S)=-H12(S)前两式表明互易二端口网络的Y 参数矩阵和Z 参数矩阵是对称矩阵,后式表明互易二端口网络的H 参数矩阵是反对称矩阵。
将上列诸式中的变量S换成 jω就得到正弦稳态下的互易定理。
应用条件 并非任何一个网络都具有互易性质。一般地说,由线性时不变的二端电阻元件、电感元件、电容元件、耦合电感器和理想变压器连接而成的网络均有此性质。含有受控电源、非线性元件、时变元件、回转器的网络都不一定具有这种性质。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条