1) positive definiteness
正定性
1.
Generalized Inverse of Quantale Matrixs and Its Positive Definiteness
Quantale矩阵的广义逆及其正定性
2.
The author introduces this method and gives several theorems on the positive definiteness and quadratic termination property.
给出了关于正定性及二次终止性的几个定理及其严格的证明。
2) positive definite
正定性
1.
The positive definite and determinant inequalities of complex matrix;
复矩阵的正定性及行列式不等式
2.
This basis function is radial symmetrical,positive definite,derivable for any order,and compact support.
为此,介绍一种基函数,给出了单变量基函数及其一、二阶导数表达式和多变量基函数表达式及其图形,该基函数性质好,是径向对称的,正定性,具有紧支撑,而且是任意阶可导的,因此这种基函数具有重要的应用价值。
3.
in this paper, the fast that matrix E in Markowitz model is positive definite or not is discussed and conclusion is that it is never positive definite one.
对Markowitz模型当中的投资组合协方差矩阵的正定性进行了分析,说明该矩阵在一般条件下不具有正定性,并针对该模型提出了一种新的迭代求解方法,提出的求解方法不要求投资组合协方差矩阵满足正定性,因此比以往的一些方法更具实用性。
3) positive definite property
正定性
1.
n (n≥3) variable extreme value problems are discussed by the positive definite property of quadratic form.
本文利用二次型的正定性讨论了n(n≥3)元函数的极值问题。
2.
This paper gives the judgments of positive definite property on n-variable quadratic polynomials.
讨论n元实二次多项式f(x1,x2,…,xn)=(1 xT)A1x(x=(x1,…,xn)T)正定性的判定方法。
4) property of positive definite
正定性
1.
To discuss property of positive definite of compound matrix of positive definite matrix by means of compound matrix of standard form of general positive definite matrix is the background of researching the property of positive definite, but the computation of compound matrix of standard form is more troublesome.
利用一般的正定矩阵的标准形的子式阵讨论正定矩阵的子式阵的正定性是研究正定性的基础,本文给出了一般公式及具体算法。
5) positive stability
正稳定性
6) Not positive definiteness
非正定性
补充资料:连续性与非连续性(见间断性与不间断性)
连续性与非连续性(见间断性与不间断性)
continuity and discontinuity
11an父ux泊g四f“山。麻以角g、.连续性与非连续性(c。nt,n琳t:nuity一)_见间断性与不间断性。and diseo红ti-
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条