1) interface temperature stress
界面温度应力
1.
Analysis of the interface temperature stress of CFRP reinforced concrete;
碳纤维复合材料补强混凝土界面温度应力分析
3) interface temperature
界面温度
1.
Results reveal that the interface temperature history decreases sharply at first then approaches to a plateau within the observational time if the thickness of the thin layer is very small (less than 1mm)and the thermal diffusion coefficie.
在三个不同初温、不同热物性参数及边界条件下,获得了夹层介质中的温度解,给出了界面温度历史随薄层厚度、热扩散系数和介质之间热扩散系数之比的变化规律。
2.
The interface temperature and the temperature history near the interface followingthe shock compression are calculated by the method of Cattaneo heat conduction.
冲击压缩后的界面温度和界面附近的温度历史用Cattaneo热传导理论作了计算,并与Fourier热传导理论的结果作了比较。
3.
Trivedi) model and non-equilibrium effect were applied to research the tip radius and interface temperature in order to obtain the transitional characteristic from dendrite to cellular.
结果表明:尖端半径和界面温度均随抽拉速率的增加而减小,到达临界值后又急速增大。
4) Interfacial temperature
界面温度
1.
This paper discusses the calculation of interfacial temperature in trilaminar cylinder furnace walls under steady state heat transfer, analyses the properties of interfacial temperature function and provides two kinds of numerical solutions.
讨论了三层圆筒壁炉墙稳定态导热条件下中间界面温度的计算问题,并分析了中间界面温度函数的性质,进而提出了两种数值解法。
2.
The curves of the friction power,interfacial temperature and shear strength during linear friction welding of TC4 alloy were examined and calculated.
检测并计算了 TC4线性摩擦焊过程中的摩擦功率、界面温度及剪切强度变化曲线,论述了三条曲线的变化规律及相互对应关系,结合线性摩擦焊过程界面金属的热物理性能变化过程,初步探讨了 TC4线性摩擦焊焊接接头的形成机理。
5) temperature front
温度界面
6) interface stress
界面应力
1.
Theory calculate and finite element analysis of the interface stress in concrete beams strengthened by GFRP;
玻璃钢板加固既有混凝土梁界面应力分析
2.
Based on the displacement function solution for plane issue in elastic mechanics, the common solutions of interface stress and displacement in multilayer coatings system are deduced by Fourier transformation, so that an effective and simple algorithm to calculate interface stress of coatings is obtained.
基于弹性力学平面问题的位移函数解法,运用Fourier积分变换推导了多层涂层体系界面应力及位移分量的一般解,得到一种高效、简便的涂层界面应力计算方法。
3.
As size of low dimensional materials decreases, which leads to the dramatic increase of surface/volume ratio, their properties are essentially controlled by related interface energetic terms, such as interface energy and interface stress.
随着低维材料尺寸的减小,表面体积比急剧增加,界面能和界面应力对材料性能的影响显著增加。
补充资料:复合材料界面残余应力
复合材料界面残余应力
residual stress in interface of composite materials
复合材料界面残余应jJ residualstressininterface of composite materials复合材料成型后由于基体的固化或凝固所造成的收缩应力(一般为收缩,但也有膨胀的情况),以及因增强体和基体的热膨胀系数不匹配而由环境温度造成的热应力,两者结合起来所构成的总残余应力。对于树脂基复合材料,可设法改变组成来控制树脂基体的收缩率,即利用某种在固化时膨胀的树脂与一般收缩型树脂配合来控制其收缩应力的状态。对金属基复合材料,也可以控制凝固工艺条件或热处理来减少收缩应力。然而对于热膨胀系数失配的热应力,则很难消除。现在正致力于研究膨胀系数可控的基体,以达到消除热应力的目的。 界面相残余应力的表征方法是一个薄弱环节。这是因为界面相很薄,同时基体也有透明不透明之分。对于透明基体(如透明的树脂、半透明的玻璃基体等)的表征要相对容易一些,可以用一般光弹方法或激光干涉云纹方法。数据的处理、应力的计算也比较成熟。对于不透明的基体如金属基、陶瓷基复合材料,则用X光衍射测定由于残余应力导致基体结晶的晶胞参数的改变,从而计算出应力的数值。由于界面区很小,要用细聚焦高能量的X射线源,同时分析计算误差亦大,常常导致非常分散的结果。这种方法不能用于不透光的非晶态基体(如玻璃类)。 界面相残余应力的存在对复合材料的性能有较大的影响。例如将可控收缩树脂的收缩率调整到接近零,并涂覆在增强体表面,这样构成的复合材料的抗冲击性能有明显的提高,拉伸强度也有一定的改善。但这仅仅是消除了收缩应力,而热应力仍然存在。可以预料,如果同时能消除界面相内所有残余应力,则复合材料性能会有更为显著的改善。此外,也有研究表明,复合材料界面相存在残余应力,会使复合材料拉伸和压缩性能有明显的差异。这是因为基体固化收缩和从工艺态到使用态时温度降低,使高度热膨胀的基体转入收缩。这两种应力都会使没有固化收缩和热膨胀系数小的增强体受到压应力,而基体是受到拉应力,从而导致复合材料拉伸和压缩性能的不同。目前仅知道残余应力的大小和方向对复合材料的性能有影响,今后尚需深入研究消除残余应力的措施,或者更进一步去控制和利用这种残余应力。当然,首先要很好地解决界面相残余应力的表征方法,这样才有基础去了解、控制和进一步利用界面相残余应力。(吴人洁)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条