1) coset
[英]['kəuset] [美]['kosɛt]
陪集
1.
A Coset Searching Algorithm Based on Quantum Low-density-parity-check Codes;
一种基于量子低密度奇偶校验码的陪集搜索算法
2.
High-dimensional affine codes were constructed using weak block designs, where the s-dimensional coset of s-dimensional affine geometry G(m,p) over a finite field F_p was taken as an informational bit, and every s-dimensional coset family corresponding each element was regarded as a check line.
利用弱区组设计的方法,以Fp上的m维仿射几何G(m,p)的s维陪集为信息位,将每个元素对应的s维陪集族作为监督维线,构造了高维仿射码,并且分析了该码的码长、维数、极小码距和码率。
3.
With regard to the section of coset in algebraic structure, a series of well-mastered concepts including equivalent relationship and division are applied, and typical examples are cited to introduce the conception of equivalent relationship-coset relationship defined through subgroup.
对于其中代数结构部分的陪集一节,应用已经熟知的等价关系和划分的概念,通过引例导出由子群定义的等价关系———陪集关系,进而得到群的划分———陪集,再研究陪集的性质。
2) coset graph
陪集图
1.
The CI-property of coset graphs of groups with order qp;
qp阶群陪集图的CI性
2.
The Cayley graph and Sabidussi coset graph are the classical representativities of these graphs.
通常图的对称性的描述是通过图的全自同构群的某种传递性质,这类传递图的典型代表是Cayley图和Sabidussi陪集图,本文主要目的是研究4p阶及6p阶群的Cayley图及陪集图的CI性和正规性。
3.
The classical representations of these type graphs are Cayleygraphs and Sabidussi Coset graphs.
这类图的典型代表是Cayley图和Sabidussi陪集图。
3) relation of coset
陪集关系
4) coset head
陪集首
5) cyclotomic cosets
循环陪集
1.
The calculation formulae for period distribution of q-ary BCH codes with designed distance 7 were obtained based on the discussion of cyclotomic cosets and property of cyclotomic polynomials: the period distribution is q s power.
通过对循环陪集的研究及利用分圆多项式的一个性质,得到了设计距离为7的q元BCH码的周期分布计算公式:码的周期分布为q的幂,当码的周期不等于某些特殊值时,幂为码长与周期的最大公因数。
2.
In paper[1],The problem of finding the lower bounds on minimum distance for Goppa Codes and Alternant Codes was turned into the problem of finding the element M(r) which is first greater than the given r in the lead set of cyclotomic cosets A.
文献[1]将求Goppa码、Alternant码最小距离下限归结为求循环陪集首集A中最小的比r大的元M(r)的问题。
6) cyclotomic coset
分圆陪集
1.
For givenτ andη ,a method which decidesλ to satisfy trinomial is proposed, the acquisition of all trinomials of a m-sequence only depends on the reciprocal polynomial of the primitive polynomial which produces the m-sequence and the cyclotomic cosets mod pn-1.
无需给出 m序列,只需通过产生 m序列的本原多项式的互反多项式以及关于模 pn-1的分圆陪集就可以获得全部序列三项式。
补充资料:陪集
陪集
coset
陪集[~t;eMe袱u。盛翻aeel,子群11在群G中的(左) G中形式为 aH二笼ah:h任H}的元素的集合,其中a是G的一个固定元素.这个陪集也称为11在G中由a确定的左陪集.每个左陪集由它的任一元素决定.aH=H当且仅当a任H.对所有a,b‘G,陪集aH和bH或相等或无交.于是,G可分解成H的互不相交的左陪集的并集;这个分解称为G对于H的车分解(leftde~娜ition).类似地,可定义右陪集( right姗ets)(是集合Ha,a任G)和G对H的有兮解(righ‘decom卿ition)·这些分解由相同个数的陪集组成(在无限的情形,它们有相等的势).这个数(势)称为子群H在G中的指数(index of thesubgrouP).对于正规子群,左分解和右分解重合,这时可简单地称群对于平规矛群的分解(decom娜itionof”norlnal group).0.入H般Hosa撰[补注]也见正规子群(non力a】subgrouP).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条