2) Non-convex model
非凸多面体
3) nonconvex
非凸
1.
Optimization of the Nonconvex Large Scale System by Introducing Instrument Variables;
非凸大系统优化的辅助变量法
2.
Multi-objective compatible iterative control algorithm for nonconvex objective problem;
目标空间非凸的多目标相容迭代控制算法
3.
The nonconvex global optimization problems are methodic al ly similar to the partial convex optimization problems,which had been studied by the author.
利用非凸优化问题中的Lagrange对偶性思想 ,对可行集进行恰当的细划 ,证明了求解相应的Lagrangian对偶问题所获得的剖分对偶界在适当的假设条件下收敛到原问题的最优值 。
4) Real non degenerate strictly pseudoconvex polyhedra
实非退化强拟凸多面体
5) convex body
凸体
1.
In this paper,relationship of volume ratios between a symmetric convex body and its sections and projections is shown.
讨论对称凸体的体积比与其截面、投影的体积比的关系,推出体积比的Blaschke-Santaló类型的不等式,以及得到超立方体的体积比和单形体积比的渐进性质。
2.
Utilizing the method of symmetric operator and affine transformation, for an arbitrary convex body K C R~n,it is proven directly that there exists affine trans- formation image ■ of K is istropic,or that it is in the istropic position.
本文利用对称算子和仿射变换的方法,对任一凸体K C R~n直接证明了存在K的仿射变换象■,使得■是迷向体,或称■处于迷向位置。
3.
For p>0,Lutwak,Yang and Zhang introduced a star bodyΓ_(-p)K of a convex body K.
对p>0,Lutwak,Yang和Zhang引进了R~n中一个凸体K的对偶L_p~-质心体Γ_(-p)K。
6) convex bodies
凸体
1.
Inequalities and Extremum Problems for Convex Bodies and Star Bodies;
凸体及星体的不等式与极值问题
2.
In this paper we extend the fundamental theorem of Droretzky on the almost ellipsoidal sections of centrally symmetric convex bodies to that of general convex bodies.
将关于中心对称凸体的低维椭球截面的Dvoretzky的著名定理推广到了一般凸体上。
补充资料:凸体
凸体
convex body
凸体!。比洲ex饭xjy;肠In岁叫.eT姗](有忿黯量墓淤馨鹦空’“中”“装鬓霍
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条