说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 局部寻优
1)  local optimization
局部寻优
2)  local search of algorithm
局部寻优算法
3)  f local optimizer
f局部寻优算子
4)  global optimization
全局寻优
1.
A function optimization problem is presented to demonstrate the feasibility of this method as well as demonstrating the global optimization functionality of genetic algorithm.
探讨了在MATLAB环境中实现遗传算法仿真的方法,并以一个简单的求函数最值的问题作为遗传算法的应用实例,说明遗传算法的全局寻优性及用MATLAB实现仿真的可行性。
2.
In this paper, the authors describe a new global optimization strategy to solve some problems such as the initial model sensitivity, frequent local traps for the conventional impedance inversion based on model in the method searching model based on genetic algorithm is added into the calculating flow of logging constraint inversion.
针对常规基于模型的波阻抗反演方法严重依赖于初始模型的选择和易陷入局部最优等局限性,提出了一种新的全局寻优策略。
3.
This paper presents a new inversion algorithm,quantum genetic algorithm,which adopts the qubit chromosomes as presentations and updates the population using quantum rotation gate,to accelerate the search speed,to improve convergent efficiency,and to get a better global optimization.
量子遗传算法QGA(Quantum Genetic Algorithm)以量子理论为基础,通过量子位编码和量子旋转门更新种群来寻找全局最优,加快了搜索速度,具有更强的全局寻优能力。
5)  local optimization
局部最优
1.
But BP arithmetic has a low identifying speed and easy to encounter local optimization.
但是BP算法识别速度慢,而且容易陷入局部最优。
2.
The object of the optimization about some practice problem is that search for all local optimization value.
某些实际问题的优化目标是求所有的局部最优解,即求解多峰寻优问题,为了求解多峰优化问题,提出了改造的微粒群优化算法。
6)  local optima
局部最优
1.
Particle swarm optimization algorithm is a swarm intelligence algorithm,which is easily trapped in local optima.
为克服粒子群优化算法容易陷入局部最优的缺点,根据混沌运动的随机性、遍历性特点,提出一种基于混沌思想的粒子群优化算法(CPSO)。
2.
Implied by its three-term structure,the inherent shortcoming that trends to local optima is indicated.
指出其三段式结构所隐含的易陷入局部最优问题,进而提出了一种带有扰动项的改进粒子群算法(PSO-DT)。
补充资料:局部最优
分子式:
CAS号:

性质:优化问题在某一范围内的最优解。局部最优是相对全局最优解而言的。如对于极小化问题,设f(x)为目标函数,s为可行域,若存在的s邻域Nε()=使得对每个x∈s∩Nε(),f(x)≥f()成立,则王即为极小化问题min f(x)的局部最优。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条