说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 硬弹簧型达芬方程
1)  hard-spring type of Duffing equation
硬弹簧型达芬方程
1.
An advantage of Galerkin method was that, for a given trial function, the residuals of the dynamic von Karman partial differential equations could be eliminated easily, thereby the governing equation of an annular thin plate for forced vibration, namely the hard-spring type of Duffing equation, could be obtained.
为研究环形薄圆板非线性振动特性,用伽辽金法消除动态卡门偏微分方程的残值,推导出了环形薄圆板的受迫振动控制方程,即硬弹簧型达芬方程;用KBM法求解达芬方程,定性地探讨了边界条件、阻尼比、外激振力和内外半径比对环形薄圆板振动的影响,得到了4种边界条件下共振时激起的振幅均随半径比或阻尼比的增大而减少的结论;取外激振力作为控制参数,进行理论分析和数值仿真,发现随着外激振力的增大,动力系统从围绕1个焦点的周期运动转变成围绕2个焦点的周期运动。
2)  Duffing equation
达芬方程
1.
A model is presented based on the Duffing equation, which describes the behavior of the nanomechanical resonators.
纳机械谐振器有几百兆甚至更高的工作频率,本文利用达芬方程作为纳机械谐振器的动力学方程,用数值方法求解了电磁驱动纳机械谐振器的动态特性,计算表明谐振器有明显的非线性特性,与国外已有的实验结果相符合,该分析方法可以为纳机械混频器设计提供参考。
3)  Duffing differential equation
达芬微分方程
4)  hardening spring
硬化弹簧
5)  hard spring property
硬弹簧
1.
Stiffness values varied with displacement and moving direction of NC table and shown nonlinear regulations such as soft spring property or hard spring property.
数控工作台受滚珠丝杠轴向力、横向力、扭矩、摩擦力和切削力等多种载荷的作用,滚珠丝杠各类刚度的大小与滚珠丝杠的支承方式密切相关;各类刚度随着工作台位移和运动方向的变化而变化,呈现出软弹簧特性或硬弹簧特性等非线性规律;摩擦力变化规律服从Streibeck曲线。
6)  spring type hardness tester
弹簧型硬度试验仪
补充资料:拟线性双曲型方程和方程组


拟线性双曲型方程和方程组
quasi-linear hyperbolic equations and systems

尸二。*(“,卢),g=u,(“,刀)的六个一阶方程,其中之一是由所有其他的导出的,可以考虑这个具有五个未知函数的五个拟线性方程的组.对类似的方程组,因此对拟线性方程,成立Q成勿问题解的存在性和唯一性定理.这个方法,无需作任何重大的改变,可以应用于二阶拟线性组 a。二,+b。女,+eu堆。+韶二0,j=l,‘·,k,其中系数依赖于x,t和诸函数叼【补注】有关应用,见仁A2]一汇A3].拟线性双曲型方程和方程组【q退函七翔口hy碑比叱e闰四d.”.川另喊曰璐;~If皿.e益”砒咖eP加皿,ee翩e郑姗尹H.,“c邢cWM曰] 形如 乙「ul二又a‘D,u二f(l、 】口】‘爪的微分方程和微分方程组,方程组(l)是对具有分量。,(x),…,。*(x)(在单个方程情形下,丸二l)的矢量值函数u(x)来求解的.系数矿是矩阵,它的元依赖于空间自变量x=(x。,二,x。)和矢量值函数u,以及它的直到嫩一1阶在内的偏导数.右端项f亦依赖于这些变量.如果矿是和u的分量个数有相同阶的方阵,那么称(1)是确定方程组(de沈rn应贺d哪t曰m).特征形式(chara叱ristic form) e‘古’一。‘“。,”‘,“·,一det…1.:落。二;·……是由L的丰邵(p血cip司part)艺{二{一‘少所决定的.这里D“=沙!/刁瑞。…日袱·,而扩=鱿,.‘’C“· 方程组(1)的双曲性是由算子L的下列表征所定义的.对于x,u及其直到川一1阶在内的导数的每一组值,存在一个矢量心‘R”+’,使得对任一不平行于心的叮〔R”+’,特征方程(cllaraCteristic叫Uation) Q(又心+粉)二0(2)有mk个实根又(每个根有多少重就算多少次). 通过某点尸‘R”十’且垂直于矢量省的面元称为空向的(印ace】正e),垂直于空向面的方向称作时向的(石力℃」正e), 一曲线,在它每个点上都有时向的切线,称作时向曲线(ljme.】ike~). Ca.dly问题(Ouchy Problem)在拟线性双曲型方程和方程组的所有问题中占有中心位置,它是在下列条件下求方程组(l)的解u的问题:在由方程 职(x)“0,!D,卜}gad甲1尹0所定义的某个光滑的n维超曲面n上,已给函数u以及它的(沿某个不切于n的方向的)直到爪一l阶(在内)的偏导数的值.如果总可以求得这样的解,那么n称作是关于L的自由超曲面(6优b)咪r-surfa此). 如果(1)的系数和给在解析自由超曲面n上的Q叻y条件都是解析的,那么在n的一个邻域中的解析解是唯一的;如果Q公勿条件还包含有n上所有直到。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条