1) multimode coupled flutter
多模态耦合颤振
3) coupled_mode flutter
耦合模态颤振
4) multi-mode coupled buffeting
多模态耦合抖振
1.
Research on passive control theory for multi-mode coupled buffeting control of bridges;
桥梁多模态耦合抖振控制方法研究
2.
Based on multi-mode coupled buffeting theory,the buffeting differential equations governing the motion of the bridge with tuned mass damper(TMD) are established.
基于多模态耦合抖振理论,导出带有被动调谐质量阻尼器(TMD)的桥梁多模态耦合抖振系统运动微分方程,采用随机振动理论求解系统运动微分方程,并编制了桥梁多模态耦合抖振TMD控制和参数分析程序。
3.
In this paper,the buffeting differential equations governing the motion of the bridge with DTMD are established based on the multi-mode coupled buffeting theory.
文中基于多模态耦合抖振理论,导出带有DTMD的桥梁抖振系统运动微分方程,列式中考虑了多模态参与作用和模态间的气动耦合效应,并应用随机振动理论求解系统运动微分方程。
5) multimode coupled buffeting
多模态耦合抖振
1.
Based on multimode coupled buffeting theory,the buffeting control theory of multiple tuned mass dampers with dua.
基于Scanlan多模态耦合抖振理论,提出桥梁多模态耦合抖振多重DTMD控制理论,列式中考虑了多模态参与作用和模态间气动耦合效应,并编制了多重DTMD抖振控制和参数分析程序。
6) Multiple-mode-coupling vibration
多模态耦合振动
补充资料:颤振
颤振 flutter 弹性结构在均匀气(或液)流中受到空气(或液体)动力、弹性力和惯性力的耦合作用而发生的大幅度振动。它可使飞行器结构破坏,建筑物和桥梁倒塌。发生颤振的必要条件是:结构上的瞬时流体动力与弹性位移之间有相位差,因而使振动的结构有可能从气(或液)流中吸取能量而扩大振幅。最常见的颤振发生在机翼上。当机翼受扰动向上偏离平衡位置后,弹性恢复力使它向下方平衡位置运动,同时产生作用于机翼重心的向上惯性力,因机翼重心在扭心之后,惯性力产生对扭心的力矩而使机翼迎角减小,引起向下的附加气动力,加快机翼向下运动;当机翼运动到下方极限位置而返回向上运动后,出现相反的情况。整个过程中,空气动力是激振力,与飞行速度的二次方成正比;同时还有空气对机翼的阻尼力,与飞行速度成正比。低速时,阻尼力占优势,扰动后的振动逐渐消失,平衡位置是稳定的。当飞行速度超过颤振临界速度后,激振力占优势,平衡位置失稳,产生大幅度振动,导致机翼在很短时间内破坏。防止机翼颤振的最有效方法是使机翼重心前移以减小惯性力矩。设计飞机时,要在风洞中进行模型试验以确定颤振临界速度。飞机研制成功后,还需进行飞行颤振试验。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条